0
RESEARCH PAPERS: Arctic Engineering

A Three-Dimensional Plasticity and Momentum Model for Ship Resistance in Level Ice

[+] Author and Article Information
C. H. Luk

Exxon Production Research Company, Houston, TX 77252

J. Offshore Mech. Arct. Eng 113(1), 53-60 (Feb 01, 1991) (8 pages) doi:10.1115/1.2919896 History: Received June 21, 1989; Revised December 19, 1989

Abstract

In this paper, a three-dimensional analysis is presented for calculating the level ice resistance for ships that have conventional hull forms. Comparisons with published ship resistance data and other analytical predictions are also provided. The present approach combines two analytical techniques: 1) plastic limit analysis is used to describe the ice failure mechanism and the associated ice velocity field; and 2) linear and angular momentum balances determine the average ice resistance for a ship. In the momentum balance, potential flow theory is used to describe the water motion induced by the icebreaking process. Existing methods for determining ship resistance in ice include numerical methods which depend on solutions of equations of motion that describe the dynamic interaction between the ice and the ship, and empirical methods which depend on model and full-scale icebreaker data to generate empirical correlations for ship resistance. The present results compare reasonably well with published model-scale and full-scale icebreaker data. Comparisons with predictions based on other numerical methods are also discussed.

Copyright © 1991 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In