0
RESEARCH PAPERS

Stress Concentrations in DT/X Square-to-Square and Square-to-Round Tubular Joints

[+] Author and Article Information
A. K. Soh, C. K. Soh

Nanyang Technological University, Nanyang Avenue, Singapore 2263, Republic of Singapore

J. Offshore Mech. Arct. Eng 116(2), 49-55 (May 01, 1994) (7 pages) doi:10.1115/1.2920132 History: Received December 02, 1992; Revised January 26, 1994; Online June 12, 2008

Abstract

A parametric stress analysis of DT/X square-to-square and square-to-round tubular joints subjected to axial loads, in-plane, and out-of-plane bending moments has been performed using the finite element technique in order to provide a sound basis for using such sections in the design of complex structures. The results of this analysis are presented as a set of equations expressing the stress concentration factor as a function of the relevant geometric parameters for various loading conditions. A comparison is made between the results obtained for square-to-square and square-to-round tubular joints and those obtained for round-to-round tubular joints by other researchers. In general, the stress concentration factors for square-to-square tubular joints are the highest, followed by those of the corresponding round-to-round joints, with those of the corresponding square-to-round joints the lowest when the joints are subject to axial loads. In the case of in-plane bending moment, the stress concentration factors for square-to-square joints are generally still the highest, but followed by those of the corresponding square-to-round joints, with those of the corresponding round-to-round joints the lowest. However, the stress concentration factors for the three types of joint are comparable when they are subject to out-of-plane bending moments.

Copyright © 1994 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In