Hammack,
J., Scheffner,
N., and Segur,
H., 1991, “A Note on the Generation and Narrowness of Periodic Rip Currents,” J. Geophys. Res., 96, pp. 4909–4914.

Hammack,
J., McAllister,
D., Scheffner,
N., and Segur,
H., 1995, “Two-Dimensional Periodic Waves in Shallow Water, Part 2 Asymmetric Waves,” J. Fluid Mech., 285 .

Hammack,
J., Scheffner,
N., and Segur,
H., 1989, “Two-Dimensional Periodic Waves in Shallow Water,” J. Fluid Mech., 209, pp. 567–589.

Segur,
H., and Finkel,
A., 1985, “An Analytical Model of Periodic Waves in Shallow Water,” Stud. Appl. Math., 73, pp. 183–220.

Craig,
W., and Nicholls,
D., 2000, “Traveling Two and Three Dimensional Capillary Gravity Water Waves,” SIAM (Soc. Ind. Appl. Math.) J. Math. Anal., 32(2), pp. 323–359.

Roberts,
A. J., 1983, “Highly Nonlinear Short-Crested Water Waves,” J. Fluid Mech., 135, pp. 301–321.

Roberts,
A. J., and Peregrine,
D. H., 1983, “Notes on Long-Crested Water Waves,” J. Fluid Mech., 135, pp. 323–335.

Bryant,
P. J., 1985, “Doubly Periodic Progressive Permanent Waves in Deep Water,” J. Fluid Mech., 161, pp. 27–42.

Nicholls,
D. P., 1998, “Traveling Water Waves: Spectral Continuation Methods with Parallel Implementation,” J. Comput. Phys., 143, pp. 224–240.

Su,
M.-Y., 1982, “Three-Dimensional Deep-Water Waves, Part I. Experimental Measurement of Skew and Symmetric Wave Patterns,” J. Fluid Mech., 124, pp. 73–108.

Su,
M.-Y., Bergin,
M., Marler,
P., and Myrick,
R., 1982, “Experiments on Nonlinear Instabilities and Evolution of Steep Gravity-Wave Trains,” J. Fluid Mech., 124, pp. 45–72.

Caulliez,
G., Ricci,
N., and Dupont,
R., 1998, “The Generation of the First Visible Wind Waves,” Phys. Fluids, 10(4), pp. 757–759.

Collard,
Caulliez, 1999, “Oscillating Crescent-Shaped Water Wave Patterns,” Phys. Fluids, 11(11), pp. 3195–3197.

Kimmoun,
O., Branger,
H., and Kharif,
C., 1999, “On Short-Crested Waves: Experimental and Analytical Investigations,” Eur. J. Mech. B/Fluids, 18, pp. 889–930.

Bridges,
T. J., Dias,
F., and Menasce,
D., 2001, “Steady Three-Dimensional Water-Wave Patterns on a Finite-Depth Fluid,” J. Fluid Mech., 436, pp. 145–175.

Carter, J., 2001, “*Stability and Existence of Traveling Wave Solutions of the Two-Dimensional Nonlinear Schrödinger Equation and its Higher-Order Generalizations*,” Ph.D. Thesis, University of Colorado at Boulder.

Ablowitz, M. J., and Segur, H., 1977, “The Inverse Scattering *Transform*,” SIAM Rev.