Zhong, Z., Falzarano, J. M., and Fithen, R. M., 1998, “A Numerical Study of U-Tube Passive Anti-Rolling Tanks,” "*Proceedings of the 8th Offshore and Polar Engineering Conference*", Vol. 3 , Montreal, May 24–29, pp. 504–512.

Kareem, A., Kijewski, T., and Tamura, Y., 1999, “Mitigation of Motions of Tall Buildings With Specific Examples of Recent Applications,” Wind Struct., 2 (3), pp. 205–251.

Verhagen, H. G., and Wijngaarden, L. V., 1965, “Non-Linear Oscillations in a Fluid Container,” J. Fluid Mech., 22 , pp. 737–751.

Faltinsen, O., 1974, “A Nonlinear Theory of Sloshing in Rectangular Tanks,” J. Ship Res., 18 (4), pp. 224–241.

Faltinsen, O., 1978, “A Numerical Nonlinear Method of Sloshing in Tanks With Two-Dimensional Flow,” J. Ship Res., 22 (3), pp. 193–202.

Mikelis, N. E., and Journee, J. M., 1984, “Experimental and Numerical Simulations of Sloshing Behavior in Liquid Cargo Tanks and its Effect on Ship Motion,” National Conference on Numerical Methods for Transient and Coupled Problems , Venice, July 9–13.

Journee, J. M., 1997, “Liquid Cargo and its Effect on Ship Motions,” "*Proceedings of the 6th International Conference on Stability of Ships and Ocean Structures*", Varna, Bulgaria, Sep. 22–27, pp. 137–150.

Dillingham, J. T., and Falzarano, J. M., 1986, “A Numerical Method for Simulating Three-Dimensional Sloshing,” Spring Meeting, STAR Symposium , May 20–23.

Zhong, Z., Falzarano, J. M., and Fithen, R. M., 1998, “A Numerical Study of U-Tube Passive Anti-Rolling Tanks,” "*Proceedings of the 8th Offshore and Polar Engineering Conference*", Vol. 3 , Montreal, May 24–29, International Society of Offshore and Polar Engineers, Golden, CO, pp. 504–512.

Ibrahim, R. A., and Pilipchuk, V. N., 2001, “Recent Advances in Liquid Sloshing Dynamics,” Appl. Mech. Rev., 54 (2), pp. 133–199.

Armenio, V., and La Rocca, M., 1996, “On the Analysis of Sloshing of Water in Rectangular Containers: Numerical Study and Experimental Validation,” Ocean Eng.

[CrossRef], 23 (8), pp. 705–739.

Ikeda, T., and Nakagawa, N., 1997, “Non-Linear Vibrations of a Structure Caused by Water Sloshing in a Rectangular Tank,” J. Sound Vib., 201 (1), pp. 23–41.

Modi, V., and Munshi, S., 1998, “An Efficient Liquid Sloshing Damper for Vibration Control,” J. Fluids Struct., 12 , pp. 1055–1071.

Celebi, M., and Akyildiz, H., 2002, “Non-Linear Model of Liquid Sloshing in a Moving Rectangular Tank,” Ocean Eng.

[CrossRef], 29 , pp. 1527–1553.

Lee, H., and Cho, J., 2004, “Numerical Study on Liquid Sloshing in Baffled Tank by Nonlinear Finite Element Method,” Comput. Methods Appl. Mech. Eng., 193 , pp. 2581–2598.

Frandsen, J., 2004, “Sloshing Motion in Excited Tanks,” J. Comput. Phys., 196 , pp. 53–87.

Wang, B., and Khoo, B., 2005, “Finite Element Analysis of Two-Dimensional Nonlinear Sloshing Problems in Random Excitations,” Ocean Eng., 32 , pp. 107–133.

Akyildiz, H., and Unal, E., 2005, “Experimental Investigation of Pressure Distribution on a Rectangular Tank Due to the Liquid Sloshing,” Ocean Eng., 32 , pp. 1503–1516.

Lee, T., Zhou, Z., and Cao, Y., 2002, “Numerical Simulations of Hydraulic Jumps in Water Sloshing and Water Impacting,” ASME J. Fluids Eng.

[CrossRef], 124 , pp. 215–226.

Vreugdenhil, C. B., 1994, "*Numerical Methods for Shallow-Water Flow*", Water Science and Technology Library, Vol. 13 , Kluwer, Dordrecht.

Anderson, D., Tannehill, J., and Pletcher, R., 1984, "*Computational Fluid Mechanics and Heat Transfer*", McGraw-Hill, New York.

Van Leer, B., 1979, “Towards the Ultimate Conservative Difference Scheme: A Second-Order Sequel to Godunov’s Method,” J. Comput. Phys.

[CrossRef], 23 , pp. 263–275.

Reed, W. H., and Hill, T. R., 1973, “Triangular Mesh Methods for the Neutron Transport Equation,” TR LA-UR-73-479, Los Alamos Scientific Laboratory, Los Alamos, NM.

Douglas, J., and Dupont, J., 1976, "*Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods*", *Lecture Notes in Physics* 58 , Springer-Verlag, Berlin.

Wheeler, M. F., 1978, “An Elliptic Collocation Finite Element Method With Interior Penalties,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.

[CrossRef], 15 , pp. 152–161.

Arnold, D. N., 1982, “An Interior Penalty Finite Element Method With Discontinuous Elements,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.

[CrossRef], 19 , pp. 742–760.

Cockburn, B., and Shu, C. W., 1989, “TVB Runge-Kutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws, II: General Framework,” Math. Comput., 52 (186), pp. 411–435.

Cockburn, B., Lin, S. Y., and Shu, C. W., 1989, “TVB Runge-Kutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws, III: One Dimensional Systems,” J. Comput. Phys.

[CrossRef], 84 , pp. 90–113.

Cockburn, B., Hou, S., and Shu, C. W., 1990, “TVB Runge-Kutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws, IV: The Multi-Dimensional Case,” Math. Comput., 54 , pp. 545–581.

Cockburn, B., and Shu, C. W., 1998, “TVB Runge-Kutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws, V: Multi-Dimensional Systems,” J. Comput. Phys., 141 , pp. 190–244.

Roe, P. L., 1981, “Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes,” J. Comput. Phys.

[CrossRef], 43 , pp. 357–372.

Hirsch, C., 1984, "*Numerical Computation of Internal and External Flows*", Wiley, New York, Vol. 2 .

Roe, P. L., 1983, “Some Contributions to the Modeling of Discontinuous Flows,” "*Proc. 1983 AMS-SIAM Summer Seminar on Large Scale Computing in Fluid Mechanics*", Lectures in Applied Mathematics , Vol. 22 , SIAM, Philadelphia, pp. 163–193.

Chakravarthy, S. R., and Osher, S., 1983, “High Resolution Applications of the Osher Upwind Scheme for the Euler Equations,” "*Proceedings of the AIAA 6th Computational Fluid Dynamics Conference*", AIAA, Washington, DC, AIIA Paper No. 83-1943, pp. 363–373.