Ohyama,
T.
, and
Nadaoka,
K.
, 1991, “
Development of a Numerical Wave Tank for Analysis of Nonlinear and Irregular Wave Field,” Fluid Dyn. Res.,
8(5), pp. 231–251.

[CrossRef]
Boo,
S. Y.
,
Kim,
C. H.
, and
Kim,
M. H.
, 1994, “
A Numerical Wave Tank for Nonlinear Irregular Waves by 3-D Higher Order Boundary Element Method,” Int. J. Offshore Polar Eng.,
4(4), pp. 265–272.

Tanizawa,
K.
, and
Naito,
S.
, 1998, “
A Study of Parametric Roll Motions by Fully Nonlinear Numerical Wave Tank,” Int. J. Offshore Polar Eng.,
8(4), pp. 251–257.

Buchmann,
B.
,
Skourup,
J.
, and
Cheung,
K. F.
, 1998, “
Run-Up on a Structure Due to Second-Order Waves and a Current in a Numerical Wave Tank,” Appl. Ocean Res.,
20(5), pp. 297–308.

[CrossRef]
Boo,
S.
, 2002, “
Linear and Nonlinear Irregular Waves and Forces in a Numerical Wave Tank,” Ocean Eng.,
29(5), pp. 475–493.

[CrossRef]
Falnes,
J.
, 2002, “
Optimum Control of Oscillation of Wave-Energy Converters,” Int. J. Offshore Polar Eng.,
12(2), pp. 147–155.

Babarit,
A.
,
Hals,
J.
,
Muliawan,
M.
,
Kurniawan,
A.
,
Moan,
T.
, and
Krokstad,
J.
, 2012, “
Numerical Benchmarking Study of a Selection of Wave Energy Converters,” Renewable Energy,
41, pp. 44–63.

[CrossRef]
Nematbakhsh,
A.
,
Michailides,
C.
,
Gao,
Z.
, and
Moan,
T.
, 2015, “
Comparison of Experimental Data of a Moored Multibody Wave Energy Device With a Hybrid CFD and BIEM Numerical Analysis Framework,” ASME Paper No. OMAE2015-41732.

Bachynski,
E. E.
, and
Moan,
T.
, 2014, “
Ringing Loads on Tension Leg Platform Wind Turbines,” Ocean Eng.,
84, pp. 237–248.

[CrossRef]
Chan,
G. K.
,
Sclavounos,
P. D.
,
Jonkman,
J.
, and
Hayman,
G.
, 2015, “
Computation of Nonlinear Hydrodynamic Loads on Floating Wind Turbines Using Fluid-Impulse Theory,” ASME Paper No. OMAE2015-41053.

Ghasemi,
A.
,
Olinger,
D. J.
, and
Tryggvason,
G.
, 2015, “
Computational Simulation of Tethered Undersea Kites for Power Generation,” ASME Paper No. IMECE2015-50809.

Schloer,
S.
,
Paulsen,
B. T.
, and
Bredmose,
H.
, 2014, “
Application of CFD Based Wave Loads in Aeroelastic Calculations,” ASME Paper No. OMAE2014-24684.

Bokmann,
A.
,
Pakozdi,
C.
,
Kristiansen,
T.
,
Hyunchul,
J.
, and
Kim,
J.
, 2014, “
An Experimental and Computational Development of a Benchmark Solution for the Validation of Numerical Wave Tanks,” ASME Paper No. OMAE2014-24710.

Ren,
N.
,
Li,
Y.
, and
Ou,
J.
, 2014, “
Coupled Wind-Wave Time Domain Analysis of Floating Offshore Wind Turbine Based on Computational Fluid Dynamics Method,” J. Renewable Sustainable Energy,
6(2), p. 023106.

[CrossRef]
Liou,
M. S.
, and
Kao,
K. H.
, 1994, “
Progress in Grid Generation: From Chimera to DRAGON Grids,” NASA Lewis Research Center, Cleveland, OH, Technical Report No. NASA-TM-106709.

Ferziger,
J. H.
, and
Peric,
M.
, 2012, Computational Methods for Fluid Dynamics, 3rd ed.,
Springer Science and Business Media,
New York, Chap. 2, pp. 25–31.

Yang,
J.
, and
Stern,
F.
, 2009, “
Sharp Interface Immersed-Boundary/Level-Set Method for Wave-Body Interactions,” J. Comput. Phys.,
228(17), pp. 6590–6616.

[CrossRef]
Kim,
J. W.
,
Jang,
H.
,
Kyoung,
J.
,
Baquet,
A.
, and
O'Sullivan,
J.
, 2015, “
CFD-Based Numerical Wave Basin for Offshore Floater Design,” Offshore Technology Conference, Houston, TX, Paper No. OTC-26060-MS.

Mittal,
R.
, and
Iaccarino,
G.
, 2005, “
Immersed Boundary Methods,” Annu. Rev. Fluid Mech.,
37(1), pp. 239–261.

[CrossRef]
Peskin,
C. S.
, 2002, “
The Immersed Boundary Method,” Acta Numerica,
11, pp. 479–517.

[CrossRef]
Mittal,
R.
,
Dong,
H.
,
Bozkurttas,
M.
,
Najjar,
F.
,
Vargas,
A.
, and
Von Loebbecke,
A.
, 2008, “
A Versatile Sharp Interface Immersed Boundary Method for Incompressible Flows With Complex Boundaries,” J. Comput. Phys.,
227(10), pp. 4825–4852.

[CrossRef] [PubMed]
Seo,
J. H.
, and
Mittal,
R.
, 2011, “
A Sharp-Interface Immersed Boundary Method With Improved Mass Conservation and Reduced Spurious Pressure Oscillations,” J. Comput. Phys.,
230(19), pp. 7347–7363.

[CrossRef] [PubMed]
Park,
J. C.
,
Kim,
M. H.
, and
Miyata,
H.
, 1999, “
Fully Non-Linear Free-Surface Simulations by a 3D Viscous Numerical Wave Tank,” Int. J. Numer. Meth. Fluids,
29(6), pp. 685–703.

[CrossRef]
Bihs,
H.
, and
Ong,
M. C.
, 2013, “
Numerical Simulation of Flows Past Partially-Submerged Horizontal Circular Cylinders in Free Surface Waves,” ASME Paper No. OMAE2013-10529.

Hu,
C.
, and
Kashiwagi,
M.
, 2004, “
A CIP-Based Method for Numerical Simulations of Violent Free-Surface Flows,” J. Mar. Sci. Tech.,
9(4), pp. 143–157.

[CrossRef]
Zhao,
X.
, and
Hu,
C.
, 2012, “
Numerical and Experimental Study on a 2D Floating Body Under Extreme Wave Conditions,” Appl. Ocean Res.,
35, pp. 1–13.

[CrossRef]
Yabe,
T.
,
Xiao,
F.
, and
Utsumi,
T.
, 2001, “
The Constrained Interpolation Profile Method for Multiphase Analysis,” J. Comput. Phys.,
169(2), pp. 556–593.

[CrossRef]
Peng,
W.
,
Lee,
K. H.
,
Shin,
S. H.
, and
Mizutani,
N.
, 2013, “
Numerical Simulation of Interactions Between Water Waves and Inclined-Moored Submerged Floating Breakwaters,” Coast. Eng.,
82, pp. 76–87.

[CrossRef]
Nematbakhsh,
A.
,
Olinger,
D. J.
, and
Tryggvason,
G.
, 2013, “
A Nonlinear Computational Model for Floating Wind Turbines,” ASME J. Fluids Eng.,
135(12), p. 121103.

[CrossRef]
Nematbakhsh,
A.
,
Olinger,
D. J.
, and
Tryggvason,
G.
, 2014, “
Nonlinear Simulation of a Spar Buoy Floating Wind Turbine Under Extreme Ocean Conditions,” J. Renewable Sustainable Energy,
6(3), p. 033121.

[CrossRef]
Nematbakhsh,
A.
,
Bachynski,
E. E.
,
Gao,
Z.
, and
Moan,
T.
, 2014, “
Comparison of Wave-Induced Response of a TLP Wind Turbine Obtained by CFD Method and Potential Theory,” 24th International Ocean and Polar Engineering Conference, Busan, Korea, June 15–20, Paper No. ISOPE-I-14-064.

Nematbakhsh,
A.
,
Bachynski,
E. E.
,
Gao,
Z.
, and
Moan,
T.
, 2015, “
Comparison of Wave Load Effects on a TLP Wind Turbine by Using Computational Fluid Dynamics and Potential Flow Theory Approaches,” Appl. Ocean Res.,
53, pp. 142–154.

[CrossRef]
Sarpkaya,
T.
, 1986, “
Force on a Circular Cylinder in Viscous Oscillatory Flow at Low Keulegan–Carpenter Numbers,” J. Fluid Mech.,
165, pp. 61–71.

[CrossRef]
Guilmineau,
E.
, and
Queutey,
P.
, 2002, “
A Numerical Simulation of Vortex Shedding From an Oscillating Circular Cylinder,” J. Fluid Struct.,
16(6), pp. 773–794.

[CrossRef]
Osher,
S.
, and
Fedkiw,
R.
, 2003, Level Set Methods and Dynamic Implicit Surfaces,
Springer Science and Business Media,
New York.

Iaccarino,
G.
, and
Verzicco,
R.
, 2003, “
Immersed Boundary Technique for Turbulent Flow Simulations,” ASME Appl. Mech. Rev.,
56(3), pp. 331–347.

[CrossRef]
Lai,
M. C.
, and
Peskin,
C. S.
, 2000, “
An Immersed Boundary Method With Formal Second-Order Accuracy and Reduced Numerical Viscosity,” J. Comput. Phys.,
160(2), pp. 705–719.

[CrossRef]
Curet,
O. M.
,
AlAli,
I. K.
,
MacIver,
M. A.
, and
Patankar,
N. A.
, 2010, “
A Versatile Implicit Iterative Approach for Fully Resolved Simulation of Self-Propulsion,” Comput. Methods Appl. Mech. Eng.,
199(37), pp. 2417–2424.

[CrossRef]
Nojiri,
N.
, and
Murayama,
K.
, 1975, “
A Study on the Drift Force on Two-Dimensional Floating Body in Regular Waves,” Trans. West-Jpn. Soc. Nav. Arch.,
51, pp. 131–152.

Koo,
W.
, and
Kim,
M. H.
, 2004, “
Freely Floating-Body Simulation by a 2D Fully Nonlinear Numerical Wave Tank,” Ocean Eng.,
31(16), pp. 2011–2046.

[CrossRef]
Tanizawa,
K.
,
Minami,
M.
, and
Naito,
S.
, 1999, “
Estimation of Wave Drift Force by Numerical Wave Tank,” 9th International Offshore and Polar Engineering Conference, Brest, France, May 30–June 4, Paper No. ISOPE-I-99-274.

Newman,
J. N.
, 1977, Marine Hydrodynamics,
MIT Press,
Cambridge, MA, Chap. 6, pp. 257–260.

Bardestani,
M.
, and
Faltinsen,
O. M.
, 2013, “
A Two-Dimensional Approximation of a Floating Fish Farm in Waves and Current With the Effect of Snap Loads,” ASME Paper No. OMAE2013-10487.

Fenton,
J.
, 1985, “
A Fifth-Order Stokes Theory for Steady Waves,” J. Waterw. Port Coastal Ocean Eng.,
111(2), pp. 216–234.

[CrossRef]
Lamb,
H.
, 1932, Hydrodynamics,
Cambridge University Press,
Cambridge, UK.

Stern,
F.
,
Bhushan,
S.
,
Carrica,
P.
, and
Yang,
J.
, 2010, “
Large Scale Parallel Computing and Scalability Study for Surface Combatant Static Maneuver and Straight Ahead Conditions Using CFDShip-Iowa,” Parallel Computational Fluid Dynamics: Recent Advances and Future Directions,
R. Biswas
, ed.,
DEStech Publications,
Lancaster, PA, pp. 79–94.

Hogben,
N.
, and
Standing,
R.
, 1975, “
Experience in Computing Wave Loads on Large Bodies,” Offshore Technology Conference, Houston, TX, May 5–8, Paper No. OTC-2189-MS.

Lee,
C. H.
, 1995, “
WAMIT Theory Manual,” Department of Ocean Engineering, Massachusetts Institute of Technology, Cambridge, MA, Report No. 95-2.

Bachynski,
E. E.
, and
Ormberg,
H.
, 2015, “
Hydrodynamic Modeling of Large-Diameter Bottom-Fixed Offshore Wind Turbines,” ASME Paper No. OMAE2015-42028.

Robertson,
A.
,
Wendt,
F.
,
Jonkman,
J.
,
Popko,
W.
,
Vorpahl,
F.
,
Stansberg,
C. T.
,
Bachynski,
E. E.
,
Bayati,
I.
,
Beyer,
F.
,
de Vaal,
J. B.
,
Harries,
R.
,
Yamaguchi,
A.
,
Shin,
H.
,
Kim,
B.
,
Zee,
T. V.
,
Bozonnet,
P.
,
Aguilo,
B.
,
Bergua,
R.
,
Qvist,
J.
,
Qijun,
W.
,
Chen,
X.
,
Guerinel,
M.
,
Tu,
Y.
,
Yutong,
H.
,
Li,
R.
, and
Bouy,
L.
, 2015, “
OC5 Project Phase I: Validation of Hydrodynamic Loading on a Fixed Cylinder,” 25th International Offshore and Polar Engineering Conference, Kona, HI, June 21–26, Paper No. ISOPE-I-15-116.

Morison,
J.
,
Johnson,
J.
, and
Schaaf,
S.
, 1950, “
The Force Exerted by Surface Waves on Piles,” J. Pet. Tech.,
2(5), pp. 149–154.

[CrossRef]
Faltinsen,
O. M.
, 1990, Sea Loads on Ships and Offshore Structures,
Cambridge University Press,
Cambridge, UK, Chap. 1, pp. 10–12.

Gallardo,
J. P.
,
Andersson,
H. I.
, and
Pettersen,
B.
, 2014, “
Turbulent Wake Behind a Curved Circular Cylinder,” J. Fluid Mech.,
742, pp. 192–229.

[CrossRef]
Majumdar,
S.
,
Iaccarino,
G.
, and
Durbin,
P.
, 2001, “
RANS Solvers With Adaptive Structured Boundary Non-Conforming Grids,” Annual Research Briefs, Center for Turbulence Research, Stanford University, Stanford, CA, pp. 353–366.

Tseng,
Y. H.
, and
Ferziger,
J. H.
, 2003, “
A Ghost-Cell Immersed Boundary Method for Flow in Complex Geometry,” J. Comput. Phys.,
192(2), pp. 593–623.

[CrossRef]
Lohner,
R.
,
Appanaboyina,
S.
, and
Cebral,
J. R.
, 2008, “
Comparison of Body-Fitted, Embedded and Immersed Solutions of Low Reynolds-Number 3-D Incompressible Flows,” Int. J. Numer. Methods Fluids,
57(1), pp. 13–30.

[CrossRef]
Verzicco,
R.
,
Mohd-Yusof,
J.
,
Orlandi,
P.
, and
Haworth,
D.
, 2000, “
Large Eddy Simulation in Complex Geometric Configurations Using Boundary Body Forces,” AIAA J.,
38(3), pp. 427–433.

[CrossRef]