Parameters Affecting the local buckling response of High Strength Linepipe

[+] Author and Article Information
Ali Fatemi

Memorial University of Newfoundland 230 Elizabeth Ave, St. John's, NL A1B 3X9, Canada

Shawn Kenny

ASME Member Associate Professor Carleton University 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada

1Corresponding author.

ASME doi:10.1115/1.4035995 History: Received November 25, 2015; Revised February 04, 2017


The local buckling response and post-buckling mechanical performance of high strength linepipe subject to combined loading state was evaluated using the finite-element simulator Abaqus/Standard v6.12. The constitutive model parameters were established through laboratory tests and the numerical modeling procedures were verified with large-scale experiments investigating the local buckling response of high strength linepipe. The numerical predictions demonstrated a high level of consistency and correspondence with the measured experimental behaviour with respect to the peak moment, strain capacity, deformation mechanism and local buckling response well into the post-yield range. A parametric study on the local buckling response of high strength plain and girth weld pipelines was conducted. The loading conditions included internal pressure and end rotation. The pipe mechanical response parameters examined included moment-curvature, ovalization, local strain and modal response. The magnitude and distribution of the characteristic geometric imperfections and the end constraint, associated with the boundary conditions and pipe length, had a significant influence on the predicted local buckling response. The importance of material parameters on the local buckling response; including the yield strength (YS), yield strength to tensile strength ratio (Y/T), and anisotropy, was also established through the numerical parameter study. For girth weld linepipe, the study demonstrated the importance of the local high/low misalignment, associated with the circumferential girth weld, on the local buckling response.

Copyright (c) 2017 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In