0
research-article

A NEW HOLISTIC APPROACH FOR SUBSEA PIPELINE UPHEAVAL BUCKLING DESIGN

[+] Author and Article Information
M. Liu

Aker Solutions London W4 5HR, UK
matt.liu@akersolutions.com

Colin Cross

Aker Solutions London W4 5HR, UK
colin.cross@akersolutions.com

1Corresponding author.

ASME doi:10.1115/1.4036377 History: Received September 19, 2016; Revised March 18, 2017

Abstract

For a trenched and buried pipeline, the propensity to upheaval buckling (UHB) is a major design concern. Predictive UHB design is typically required at the outset to determine both trenching and backfilling requirements. Additional rockdump schedule can be established by analysing post pipelay OOS survey data incorporating appropriate safety factors based on a structural reliability analysis. The normal approach is to examine the as-laid pipeline imperfection survey statistics and data accuracy. The structural reliability analysis and load factor calculation is typically performed a priori based on the assumed initial imperfections using the universal design curve methodology. A new pseudo energy method for UHB and OOS is proposed and discussed in this paper based on the variational principle and modal analysis. The approach takes into account the effects of varying effective axial force, trench imperfections and vertical uplift resistance, by combining both axial friction and lateral resistance methods into a unified model. A new concept, effective uplift resistance and associated load is also introduced to deal with non-uniform backfill cover. Adjacent imperfections and backfill profiles are considered in detail. An FE model is developed to consist of 3-noded quadratic pipe elements using ABAQUS Ver 6.12 and iterations of FE analyses are performed to demonstrate the tangible benefits of the approach specifically for UHB OOS design in relation to target trenching and backfilling, leading to improved reliability and potential cost saving in UHB OOS design and rockdump installation.

Copyright (c) 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In