0
Research Papers: Offshore Technology

Improvement of UNS S32205 Duplex Welds by GMAW and Controlled Magnetic Field for Offshore Pipelines and Flowlines Applications

[+] Author and Article Information
M. Salazar

Instituto Mexicano del Petróleo,
Eje Central Lázaro Cárdenas,
Norte 152, San Bartolo Atepehuacan,
México City C.P. 07730, México
e-mail: salazarm@imp.mx

R. García

Instituto de Investigación en
Metalurgia y Materiales,
U.M.S.N.H.,
Ciudad Universitaria,
Edificio U, Av. Francisco J. Múgica S/N,
Felicitas del Río,
Morelia C.P. 58030, Michoacán, México
e-mail: rgarcia@umich.mx

V. H. López

Instituto de Investigación en
Metalurgia y Materiales,
U.M.S.N.H.,
Ciudad Universitaria,
Edificio U, Av. Francisco J. Múgica S/N,
Felicitas del Río,
Morelia C.P. 58030, Michoacán, México
e-mail: vhlopez@umich.mx

R. Galván-Martínez

Unidad Anticorrosión-Instituto de Ingeniería,
Universidad Veracruzana,
Zona Universitaria,
Juan Pablo II s/n.,
Boca del Río C.P. 94294, Veracruz, México
e-mail: rigalvan@uv.mx

A. Contreras

Instituto Mexicano del Petróleo,
Eje central Lázaro Cárdenas,
Norte 152, San Bartolo Atepehuacan,
México City C.P. 07730, México
e-mail: acontrer@imp.mx

1Corresponding author.

Contributed by the Ocean, Offshore, and Arctic Engineering Division of ASME for publication in the JOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING. Manuscript received February 7, 2017; final manuscript received May 17, 2017; published online June 15, 2017. Assoc. Editor: Jonas W. Ringsberg.

J. Offshore Mech. Arct. Eng 139(6), 061301 (Jun 15, 2017) (7 pages) Paper No: OMAE-17-1020; doi: 10.1115/1.4036911 History: Received February 07, 2017; Revised May 17, 2017

Mechanical properties and corrosion resistance of UNS S32205 duplex stainless steel (DSS) welds obtained under the application of controlled magnetic fields were evaluated in the context of offshore pipelines and flowlines applications. Tensile tests, impact toughness, and hardness measurements were performed. Corrosion behavior was evaluated by linear polarization resistance (LPR) and potentiodynamic polarization curves (PCs) using a synthetic seawater solution at different temperatures. An improvement in tensile strength, impact toughness, and corrosion resistance was observed with the application of magnetic fields during welding. This effect is attributed to the refinement in the microstructure of the weld metal along with the suppression of detrimental intermetallic tertiary phases. Applying an axial magnetic field of 3 mT during DSS welding by the gas metal arc welding (GMAW) process is a potential technique for improving the performance of offshore pipeline welds and may be implemented in both, double-sided single pass and single-sided multipass butt joints.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

NACE, 2013, “ Use of Corrosion-Resistant Alloys in Oilfield Environments,” NACE International, Houston, TX, Standard No. NACE 1F192.
API, 2015, “ Use of Duplex Stainless Steel in the Oil Refining Industry,” American Petroleum Institute, Washington, DC, Standard No. API TR 938-C.
Alvarez, T. , Pavarino, M. , de Souza, G. , Pardal, J. M. , Tavares, S. , Ferreira, M. L. , and Filho, I. , 2016, “ Influence of Interpass Temperature on the Properties of Duplex Stainless Steel During Welding by Submerged Arc Welding Process,” Weld. Int., 30(5), pp. 348–358. [CrossRef]
Wickström, L. , Hinds, G. , and Turnbull, A. , 2015, “ Influence of Weld Preparation Procedure and Heat Tinting on Sulfide Stress Corrosion Cracking of Duplex Stainless Steel,” Corrosion, 71(8), pp. 1036–1047. [CrossRef]
Saithala, J. R. , Mahajanam, S. , Ubhi, H. S. , and Atkinson, J. , 2013, “ Environmental-Assisted Cracking Behavior of Stigmatized Super Duplex Stainless Steel in Oilfield Production Brine,” Corrosion, 69(3), pp. 276–285. [CrossRef]
ISO, 2010, “ Petroleum, Petrochemical and Natural Gas Industries—Materials Selection and Corrosion Control for Oil and Gas Production Systems,” International Organization for Standardization, Geneva, Switzerland, Standard No. ISO 21457.
Cao, L. , Anderki, A. , Gui, F. , and Sridhar, N. , 2016, “ Localized Corrosion of Corrosion Resistant Alloys in H2S-Containing Environments,” Corrosion, 72(5), pp. 636–654. [CrossRef]
De Oliveira, I. P. G. , and Luz, T. D. , 2013, “ Study of the Manufacturing Process of UNS 32304 Flexible Pipes for the Oil and Gas Industry,” Soldag. Insp., 18(1), pp. 2–11. [CrossRef]
Bai, Q. , and Bai, Y. , 2014, Subsea Pipeline Design, Analysis, and Installation, Elsevier, Waltham, MA, Chap. 24.
API, 2015, “  CRA Line Pipe,” American Petroleum Institute, Washington, DC, Standard No. G5LC04.
BS, 2011, “ Specification for Welding of Steel Pipelines on Land and Offshore—Part 2: Duplex Stainless Steel Pipelines,” British Standards Institution, London, Standard No. BS 4515-2.
DNV, 2013, “ Submarine Pipeline Systems,” Det Norske Veritas, Oslo, Norway, Standard No. DNV OS-F101.
Alvarez-Armas, I. , and Moreuil, S. D. , 2009, Duplex Stainless Steel, Wiley, London, Chap. 3.
Karlsson, L. , 2012, “ Welding Duplex Stainless Steels—A Review of Current Recommendations,” Weld. World, 56(5), pp. 65–76.
Gideon, B. , Ward, L. , and Biddle, G. , 2008, “ Duplex Stainless Steel Welds and Their Susceptibility to Intergranular Corrosion,” J. Miner. Mater. Charact. Eng., 7(3), pp. 247–263.
Ha, H. Y. , Jang, M. H. , Lee, T. H. , and Moon, J. , 2014, “ Interpretation of the Relation Between Ferrite Fraction and Pitting Corrosion Resistance of Commercial 2205 Duplex Stainless Steel,” Corros. Sci., 89, pp. 154–162. [CrossRef]
Kang, D. H. , and Lee, H. W. , 2013, “ Study of the Correlation Between Pitting Corrosion and the Component Ratio of the Dual Phase in Duplex Stainless Steel Welds,” Corros. Sci., 74, pp. 396–407. [CrossRef]
Malinowski, M. , Denouden, G. , and Vink, W. , 1990, “ Effect of Electromagnetic Stirring on GTA Welds in Austenitic Stainless-Steel,” Weld. J., 69(2), pp. S52–S59.
Villafuerte, J. , and Kerr, H. , 1990, “ Electromagnetic Stirring and Grain-Refinement in Stainless Steel GTA Welds,” Weld. J., 69(1), pp. S1–S13.
Curiel, F. F. , García, R. , López, V. H. , and González-Sánchez, J. , 2011, “ Effect of Magnetic Field Applied During Gas Metal Arc Welding on the Resistance to Localized Corrosion of the Heat Affected Zone in AISI 304 Stainless Steel,” Corros. Sci., 53(7), pp. 2393–2399. [CrossRef]
Curiel, F. F. , García, R. , López, V. H. , García, M. A. , and Lemus, J. , 2013, “ Transmission Electron Microscopy in the Heat Affected Zone of an AISI 304 Austenitic Stainless Steel Welded With the Application of a Magnetic Field of Low Intensity,” Mater. Trans., 54(1), pp. 122–125. [CrossRef]
Matsuda, F. , Nakagawa, H. , Nakata, K. , and Ayani, R. , 1978, “ Effect of Electromagnetic Stirring on Weld Solidification Structure of Aluminum Alloys (Report I)—Investigation on GTA Weld Metal of Thin Sheet,” Trans. JWRI, 7(1), pp. 111–127.
García, M. A. , López, V. H. , García, R. , Curiel, F. F. , and Ambriz, R. R. , 2010, “ Preliminary Assessment of the Effects of the Application of an Axial Magnetic Field During GMA Welding of Al-6063-T62,” MRS Online Proc. Libr., 1275, pp. S3–S21.
Garcia, R. , López, V. H. , Lázaro, Y. , and Aguilera, J. , 2007, “ Grain Refinement in Electrogas Welding of Microalloyed Steels by Inducing a Centered Magnetic Field,” Soldag. Insp., 12(4), pp. 300–304.
Sivaprasad, K. , and Raman, S. G. , 2007, “ Influence of Magnetic Arc Oscillation and Current Pulsing on Fatigue Behavior of Alloy 718 TIG Weldments,” Mater. Sci. Eng. A, 448(1–2), pp. 120–127. [CrossRef]
McCracken, S. , Yu, X. , Lim, Y. C. , Farson, D. F. , and Babu, S. S. , 2011, “ Grain Structure Refinement in Nickel Alloy Welds by Magnetic Arc Stirring,” ASME Paper No. PVP2011-57681.
García-Rentería, M. A. , López, V. H. , García, R. , Curiel, F. , and Lemus, J. , 2013, “ Effect on the Microstructure and Mechanical Properties of the Electromagnetic Stirring During GMA Welding of 2205 DSS Plates,” Mater. Sci. Forum, 755, pp. 61–68. [CrossRef]
García-Rentería, M. A. , López-Morelos, V. H. , García-Hernández, R. , Dzib-Pérez, L. , García-Ochoa, E. M. , and González-Sánchez, J. , 2014, “ Improvement of Localized Corrosion Resistance of AISI 2205 Duplex Stainless Steel Joints Made by Gas Metal Arc Welding Under Electromagnetic Interaction of Low Intensity,” Appl. Surf. Sci., 321, pp. 252–260. [CrossRef]
AWS, 2012, “ Specification for Bare Stainless Steel Welding Electrodes and Rods,” 8th ed., American Welding Society, Miami, FL, Standard No. AWS A5.9/A5.9M.
ASTM, 2013, “ Standard Test Methods for Tension Testing of Metallic Materials,” ASTM International, West Conshohocken, PA, Standard No. ASTM E8/E8M.
ASTM, 2013, “ Standard Test Methods for Notched Bar Impact Testing of Metallic Materials,” ASTM International, West Conshohocken, PA, Standard No. ASTM E23 Rev C.
ASTM, 2013, “ Standard Practice for the Preparation of Substitute Ocean Water,” ASTM International, West Conshohocken, PA, Standard No. ASTM 1141.
Muthupandi, V. , Srinivasa, P. B. , Seshadri, S. K. , and Sundaresan, S. , 2003, “ Corrosion Behaviour of Duplex Stainless Steel Weld Metals With Nitrogen Additions,” Corros. Eng. Sci. Technol., 38(4), pp. 303–308. [CrossRef]
McGuire, M. F. , 2008, Stainless Steels for Design Engineers, ASM International, Novelty, OH, Chap. 7.
Kuroda, T. , Ikeuchi, K. , and Kitagawa, Y. , 2005, “ Role of Austenite in Weld Toughness of Super Duplex Stainless Steel,” Weld. World, 49(5), pp. 29–33. [CrossRef]
Topolska, S. , and Łabanowski, J. , 2009, “ Effect of Microstructure on Impact Toughness of Duplex and Super-Duplex Stainless Steels,” J. Achiev. Mater. Manuf. Eng., 36(2), pp. 142–149.
Zucato, I. , Moreira, M. C. , Machado, I. F. , and Giampietri, S. M. , 2002, “ Microstructural Characterization and the Effect of the Phase Transformations on Toughness of the UNS S31803 Duplex Stainless Steel Aged Treated at 850 °C,” Mater. Res., 5(3), pp. 385–389. [CrossRef]
Muthupandi, V. , Srinivasan, P. B. , Seshadri, S. K. , and Sundaresan, S. , 2003, “ Effect of Weld Metal Chemistry and Heat Input on the Structure and Properties of Duplex Stainless Steel Welds,” Mater. Sci. Eng. A, 358(1–2), pp. 9–16. [CrossRef]
Young, M. C. , Chan, S. L. I. , Tsay, L. W. , and Shin, C. S. , 2005, “ Hydrogen-Enhanced Cracking of 2205 Duplex Stainless Steel Welds,” Mater. Chem. Phys., 91(1), pp. 21–27. [CrossRef]
Nakade, K. , 2003, “ Sigma Phase Precipitation and Its Influence on Hydrogen Induced Cracking of Duplex Stainless Steel Base Metal and Weld Metal,” Weld. World, 47(9), pp. 9–20. [CrossRef]
Trejo-Atecas, B. , Orozco-Cruz, R. , Contreras, A. , and Galván-Martínez, R. , 2014, “ Electrochemical Characterization of X60 Steel Corrosion at Different Overvoltages: A Cathodic Protection Studies,” Mater. Sci. Forum, 793, pp. 59–66. [CrossRef]
Roberge, P. R. , 2000, Handbook of Corrosion Engineering, McGraw-Hill, New York, Chap. 1.

Figures

Grahic Jump Location
Fig. 1

Experimental welding setup [20]

Grahic Jump Location
Fig. 2

Double “V” joint used for welding: (a) without magnetic field and (b) with magnetic field

Grahic Jump Location
Fig. 3

Location of tension and impact specimens from the welded joint and their dimensions

Grahic Jump Location
Fig. 4

Optical micrograph showing the microstructure of the BM

Grahic Jump Location
Fig. 5

Optical micrographs of DSS welds: (a) and (b) without magnetic field and (c) and (d) with magnetic field

Grahic Jump Location
Fig. 6

Optical micrographs of weld beads: (a) without magnetic field and (b) with magnetic field

Grahic Jump Location
Fig. 7

HAZ for the welds produced by GMAW: (a) without magnetic field and (b) with magnetic field

Grahic Jump Location
Fig. 8

Microhardness profiles from welds with and without magnetic field (MF—magnetic field; BM—base metal; HAZ—heat affected zone; WB—weld bead)

Grahic Jump Location
Fig. 9

Polarization curves for DSS weld samples with magnetic field exposed to seawater at different temperature: (a) room temperature and (b) 90 °C

Grahic Jump Location
Fig. 10

Polarization curves for DSS weld samples without magnetic field exposed to seawater at different temperature: (a) room temperature and (b) 90 °C

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In