0

Newest Issue


Research Papers: Materials Technology

J. Offshore Mech. Arct. Eng. 2018;140(4):041401-041401-7. doi:10.1115/1.4038585.

Evaluation of the nonlinear structural response of any structure is a challenging task; a range of input parameters are needed, most of which have significant statistical variability and the evaluations require a high degree of craftsmanship. Hence, high demands are set forth both to the analyst and the body in charge of verification of the results. Recent efforts by DNVGL attempt to mitigate this with the second edition of the DNVGL-RP-C208 for the determination of nonlinear structural response, in which guidance or requirements are given on many of the challenging aspects. This paper discusses the various challenges and the direction to which the RP-C208 points compared to published research. Parameters affecting the plastic hardening, strain-rate effects, and ductile fracture are discussed separately. Then, the combined effect of the range of assumptions is evaluated to assess the resulting level of safety.

Commentary by Dr. Valentin Fuster

Research Papers: Ocean Renewable Energy

J. Offshore Mech. Arct. Eng. 2018;140(4):041901-041901-17. doi:10.1115/1.4038584.

Flow-induced vibrations (FIVs) of two tandem, rigid, circular cylinders with piecewise continuous restoring force are investigated for Reynolds number 24,000 ≤ Re ≤ 120,000 with damping, and restoring force function as parameters. Selective roughness is applied to enhance FIV and increase the hydrokinetic energy captured by the vortex-induced vibration for aquatic clean energy (VIVACE) converter. Experimental results for amplitude response, frequency response, interactions between cylinders, energy harvesting, and efficiency are presented and discussed. All experiments were conducted in the low-turbulence free-surface water (LTFSW) Channel of the MRELab of the University of Michigan. The main conclusions are as follows: (1) the nonlinear-spring converter can harness energy from flows as slow as 0.33 m/s with no upper limit; (2) the nonlinear-spring converter has better performance at initial galloping than its linear-spring counterpart; (3) the FIV response is predominantly periodic for all nonlinear spring functions used; (4) the influence from the upstream cylinder is becoming more dominant as damping increases; (5) optimal power harnessing is achieved by changing the linear viscous damping and tandem spacing L/D; (6) close spacing ratio L/D = 1.57 has a positive impact on the harnessed power in VIV to galloping transition; and (7) the interactions between two cylinders have a positive impact on the upstream cylinder regardless of the spacing and harness damping.

Commentary by Dr. Valentin Fuster

Technical Brief: Technical Briefs

J. Offshore Mech. Arct. Eng. 2018;140(4):044501-044501-5. doi:10.1115/1.4038732.

This paper proposes a simple effective stress method for modeling the strain rate-dependent strength behavior that is experienced by many fine-grained soils in offshore events when subjected to rapid, large strain, undrained shearing. The approach is based on correlating the size of the modified Cam-Clay yield locus with strain rate, i.e., yield locus enlarging or diminishing dependent on the strain rate. A viscometer-based method for evaluating the needed parameters for this approach is provided. The viscometer measurements showed that strain rate parameters are largely independent of water content and agree closely with data from a previous study. Numerical analysis of the annular simple shear situation induced by the viscometer shows remarkable agreement with the experimental data provided the remolding-induced strength degradation effect is accounted for. The proposed method allows offshore foundation installation processes such as dynamically installed offshore anchors, free-falling penetrometer, and submarine landslides to be more realistically analyzed through effective stress calculations.

Commentary by Dr. Valentin Fuster

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In