Newest Issue

Research Papers: Piper and Riser Technology

J. Offshore Mech. Arct. Eng. 2017;139(3):031701-031701-8. doi:10.1115/1.4035303.

In order to assess the effects of vortex-induced vibration (VIV) and to ensure riser integrity, field monitoring campaigns are often conducted wherein the riser response is recorded by a few data sensors distributed along the length of the riser. In this study, two empirical techniques–proper orthogonal decomposition (POD) and weighted waveform analysis (WWA)–are sequentially applied to the data; together, they offer a novel empirical procedure for fatigue damage estimation in an instrumented riser. The procedures are briefly described as follows: first, POD is used to extract the most energetic spatial modes of the riser response from the measurements, which are defined only at the available sensor locations. Accordingly, a second step uses WWA to express each dominant POD mode as a series of riser natural modes that are continuous spatial functions defined over the entire riser length. Based on the above empirically identified modal information, the riser response over the entire length is reconstructed in reverse–i.e., compose identified natural modes into the POD modes and, then, assemble all these dominant POD modal response components into the derived riser response. The POD procedure empirically extracts the energetic dynamic response characteristics without any assumptions and effectively cleans the data of noisy or less important features; this fundamental application of WWA is used to identify dominant riser natural modes–all this is possible using the limited number of available measurements from sensor locations. Application of the procedure is demonstrated using experimental data from the Norwegian Deepwater Programme (NDP) model riser.

Commentary by Dr. Valentin Fuster

Research Papers: Ocean Renewable Energy

J. Offshore Mech. Arct. Eng. 2017;139(3):031901-031901-17. doi:10.1115/1.4035305.

Offshore wind turbines (OWTs) might be subjected to seismic loads with different peak accelerations during operation in the actively seismic regions. The earthquakes might be a potential risk for the OWTs due to its stochastic nature. Earthquake with wind and wave loads could act on OWT at the same time; thus, the structural responses of such OWTs should be analyzed taking into consideration the reasonable load combinations. Based on the hydro-elastic similarity, an integrated model of the combined National Renewable Energy Laboratory (NREL) 5 MW wind turbine and a practical pentapod substructure is designed for testing. The governing equations of motion of the integrated OWT are established. The dynamic tests and numerical analysis of the OWT model are performed under different combinations of seismic, wind, and sea load conditions. The El Centro and American Petroleum Institute (API)-based synthesized seismic waves with different peak ground accelerations (PGAs) are considered in this study. The numerical results are in good agreement with the experimental ones. The coupling effect of the OWT structure under the combined load conditions is demonstrated from the experimental and numerical results. The results indicate that the interaction of earthquake, wind, wave, and current should be taken into account in order to obtain proper structural response, especially with small PGA.

Commentary by Dr. Valentin Fuster

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In