0

Newest Issue


Research Papers: Materials Technology

J. Offshore Mech. Arct. Eng. 2017;139(3):031401-031401-6. doi:10.1115/1.4035385.

Very few studies have been conducted concerning fatigue in steel line pipe and fewer using full-scale testing. Further, at the time of this study, no research on full-scale testing was available in open literature regarding fatigue behavior of line pipe with longitudinal cracks, despite being considered more critical than the line pipe with cracks oriented in the circumferential direction. In the current research work, fatigue crack growth was investigated in NPS 20, API 5L X-70 grade, electrical resistance welding (ERW) straight-seam steel line pipes in the base metal and at the weld seam for various orientations. It was found that there was no significant difference between fatigue crack growth in the base metal and at the weld seam for the tested stress ratio. Increasing the angle of inclination of the crack with respect to the weld line was found to decrease the rate of fatigue crack growth due to a decrease in the mode I stress component. Finally, it was observed that despite the difference in fatigue crack growth rates, the crack aspect ratios were nearly identical for all cracks at the same crack depth.

Commentary by Dr. Valentin Fuster

Research Papers: Structures and Safety Reliability

J. Offshore Mech. Arct. Eng. 2017;139(3):031601-031601-11. doi:10.1115/1.4035304.

The oil and gas industry is pushing toward new unexplored remote areas, potentially rich in resources but with limited industry presence, infrastructure, and emergency preparedness. Maintenance support is very important and challenging in such remote areas. A platform supply vessel (PSV) is an essential part of maintenance support. Hence, the acceptable level of its availability performance is high. Identification of critical components of the PSV provides essential information for optimizing maintenance management, defining a spare parts strategy, estimating competence needs for PSV operation, and achieving the acceptable level of availability performance. Currently, there are no standards or guidelines for the criticality analysis of PSVs for maintenance purposes. In this paper, a methodology for the identification of the critical components of PSVs has been developed, based on the available standard. It is a systematic screening process. The method considers functional redundancy and the consequences of loss of function as criticality criteria at the main and subfunction levels. Furthermore, at the component level, risk tools such as failure modes, effects and criticality analysis (FMECA), and fault tree analysis (FTA) will be applied in order to identify the most critical components. Moreover, the application of the proposed approach will be illustrated by a real case study.

Commentary by Dr. Valentin Fuster

Research Papers: Piper and Riser Technology

J. Offshore Mech. Arct. Eng. 2017;139(3):031701-031701-8. doi:10.1115/1.4035303.

In order to assess the effects of vortex-induced vibration (VIV) and to ensure riser integrity, field monitoring campaigns are often conducted wherein the riser response is recorded by a few data sensors distributed along the length of the riser. In this study, two empirical techniques–proper orthogonal decomposition (POD) and weighted waveform analysis (WWA)–are sequentially applied to the data; together, they offer a novel empirical procedure for fatigue damage estimation in an instrumented riser. The procedures are briefly described as follows: first, POD is used to extract the most energetic spatial modes of the riser response from the measurements, which are defined only at the available sensor locations. Accordingly, a second step uses WWA to express each dominant POD mode as a series of riser natural modes that are continuous spatial functions defined over the entire riser length. Based on the above empirically identified modal information, the riser response over the entire length is reconstructed in reverse–i.e., compose identified natural modes into the POD modes and, then, assemble all these dominant POD modal response components into the derived riser response. The POD procedure empirically extracts the energetic dynamic response characteristics without any assumptions and effectively cleans the data of noisy or less important features; this fundamental application of WWA is used to identify dominant riser natural modes–all this is possible using the limited number of available measurements from sensor locations. Application of the procedure is demonstrated using experimental data from the Norwegian Deepwater Programme (NDP) model riser.

Commentary by Dr. Valentin Fuster

Research Papers: CFD and VIV

J. Offshore Mech. Arct. Eng. 2017;139(3):031801-031801-7. doi:10.1115/1.4035306.

To achieve a reliable structural model for vortex-induced vibration (VIV) the prediction of flexible risers, this paper employs structural systems with different geometrical nonlinearities (including a linear structure, a nonlinear one, a coupled cross-flow, and axial nonlinear one) and a classical oscillator to simulate cross-flow VIV. By comparing the experimental and simulation results, it is found that when the drag coefficient is assumed to be a fixed constant along the cylinder (i.e., the damping model is linear function of current velocity), it can affect the vibration amplitude considerably and may alter the dominant modes. When the excited mode of VIV is bending-stiffness dominant, the cross-flow structural nonlinearities can have a profound stiffening effect on vibration response. Although the introduction of axial deformation can reduce this function, the coupled cross-flow and axial nonlinearities still have the effect of decreasing the VIV amplitude.

Commentary by Dr. Valentin Fuster
J. Offshore Mech. Arct. Eng. 2017;139(3):031802-031802-6. doi:10.1115/1.4035384.

Many offshore constructions and operations involve water impact problems such as water slamming onto a structure or free fall of objects with subsequent water entry and emergence. Wave slamming on semisubmersibles, vertical members of jacket structures, crane operation of a diving bell, and dropping of free fall lifeboats are some notable examples. The slamming and water entry problems lead to large instantaneous impact pressures on the structure, accompanied with complex free surface deformations. These need to be studied in detail in order to obtain a better understanding of the fluid physics involved and develop safe and economical design. Numerical modeling of a free falling body into water involves several complex hydrodynamic features after its free fall such as water entry, submergence into water and resurfacing. The water entry and submergence lead to formation of water jets and air cavities in the water resulting in large impact forces on the object. In order to evaluate the forces and hydrodynamics involved, the numerical model should be able to account for the complex free surface features and the instantaneous pressure changes. The water entry of a free falling wedge into water is studied in this paper using the open source computational fluid dynamics (CFD) model REEF3D. The vertical velocity of the wedge during the process of free fall and water impact are calculated for different cases and the free surface deformations are captured in detail. Numerical results are compared with experimental data and a good agreement is seen.

Commentary by Dr. Valentin Fuster

Research Papers: Ocean Renewable Energy

J. Offshore Mech. Arct. Eng. 2017;139(3):031901-031901-17. doi:10.1115/1.4035305.

Offshore wind turbines (OWTs) might be subjected to seismic loads with different peak accelerations during operation in the actively seismic regions. The earthquakes might be a potential risk for the OWTs due to its stochastic nature. Earthquake with wind and wave loads could act on OWT at the same time; thus, the structural responses of such OWTs should be analyzed taking into consideration the reasonable load combinations. Based on the hydro-elastic similarity, an integrated model of the combined National Renewable Energy Laboratory (NREL) 5 MW wind turbine and a practical pentapod substructure is designed for testing. The governing equations of motion of the integrated OWT are established. The dynamic tests and numerical analysis of the OWT model are performed under different combinations of seismic, wind, and sea load conditions. The El Centro and American Petroleum Institute (API)-based synthesized seismic waves with different peak ground accelerations (PGAs) are considered in this study. The numerical results are in good agreement with the experimental ones. The coupling effect of the OWT structure under the combined load conditions is demonstrated from the experimental and numerical results. The results indicate that the interaction of earthquake, wind, wave, and current should be taken into account in order to obtain proper structural response, especially with small PGA.

Commentary by Dr. Valentin Fuster

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In