The effects of nozzle orientation on the mixing and turbulent characteristics of elliptical free twin jets were studied experimentally. The experiments were conducted using modified contoured nozzles with a sharp linear contraction. The centers of the nozzle pair had a separation ratio of 5.5. Four nozzle configurations were tested, one twin jet orientated along the minor plane (Twin_Minor), one twin jet orientated along the major plane (Twin_Major), one single jet orientated along the minor plane (Single_Minor) and one single jet orientated along the major plane (Single_Major). In each case, the Reynolds number based on the maximum jet velocity and the equivalent diameter was 10,000. A planar particle image velocimetry system was used to measure the velocity field in the jet symmetry plane. It was observed that the velocity decay rate is not sensitive to nozzle orientation. However, close to the jet exit the spread rate was highest in the minor plane. In addition, contour plots of Reynolds shear stress and turbulence intensities revealed significant differences between the minor and major plane. Velocity profiles showed little variation close to the jet exit, while further downstream the variations between the velocity profiles were more pronounced between the major and minor planes.

This content is only available via PDF.
You do not currently have access to this content.