Abstract

Centrifugal pump performance curves instability, characterized by a local dent, can be the consequence of flow instabilities in rotating or stationary parts. Such flow instabilities often result in abnormal operating conditions, causing severe problems such as increased pressure pulsation, noise and vibration which can damage both pump and system. For the pump to have reliable operation, it is necessary to understand the onset and the mechanism of the phenomenon resulting in performance curves instability.

Present paper focuses on performance curves instability of a centrifugal pump of low specific speed (ωs = 0.65, Ns = 1776) and aims at a better understanding of the mechanism leading to the head drop observed during tests at part load. For that purpose, Computation Fluid Dynamic (CFD) was performed using a Large-Eddy Simulation (LES) approach. The geometry used for present research is in fact the first stage of a multi-stage centrifugal pump and is composed of a suction chamber, a closed-type impeller, a vaned diffuser and return guide vanes to next stage (not included). Leakages at wear ring and stage bush were also included in the computed geometry in order to consider their potential influence on pump stability.

The occurrence of the instability in CFD is found at a higher flow rate than in the experiments. It is observed that the pre-swirl angle is under-predicted by several degrees which leads to change the impeller operating conditions.

Nevertheless, the analysis of the CFD results is still useful to have a better understanding of the onset of the head drop. When the head drops, a switching of low radial and axial velocities at the impeller outlet from the hub side to the shroud side is observed. This change of flow pattern goes along with a strong increase of the diffuser inlet throat recirculation and the development of stall, that impairs pressure recovery between the impeller outlet and the diffuser inlet.

As the pump flow rate is further decreased below the head drop flow rate, recirculation at the diffuser throat extend toward the impeller outlet and impact Euler head. Conversely, the pressure recovery from the impeller outlet to the diffuser inlet throat increases again as the flow velocity slowdown can be effective again. Consequently, the pump head increases again.

This content is only available via PDF.
You do not currently have access to this content.