Abstract

Slug flow, which commonly occurs in the petroleum industry, is not always a desired flow pattern due to production operation problems it may cause in pipelines and processing facilities. To mitigate these problems, flow conditioning devices such as multiphase flow manifolds and slug catchers are used, where dissipation of slugs occurs in downward flow or in larger diameter pipe sections. Tee-junctions are important parts of these flow conditioning devices.

In this work, Computational Fluid Dynamics (CFD) simulations are conducted using ANSYS/FLUENT 17.2 to investigate slug dissipation in an Enlarged Impacting Tee-Junction (EIT). An Eulerian–Eulerian MultiFluid VOF transient model in conjunction with the standard k-ε turbulent model is used to simulate slug dissipation in an EIT geometry. The EIT consists of a 0.05 m ID 10 m long inlet, which is connected to the center of a 0.074 m ID 5.5 m long section that forms the EIT branches. Moreover, experimental data are acquired on slug dissipation lengths in a horizontal EIT with a similar geometry as in the CFD simulations.

The CFD results include the mean void fraction and cross-sectionally averaged void fraction time series in the EIT for different gas and liquid velocities. These results provide the inlet slug length and dissipation length in the EIT branches. The CFD results are evaluated against the experimental data demonstrating that the slug dissipation occurring in EIT branches can be predicted by simulation.

This content is only available via PDF.
You do not currently have access to this content.