The rate of hydrogen production within the PEM electrolysis cell is influenced by the temperature, the velocity distributions, and the pressure distribution. In order to design and use a PEM electrolyzer cell effectively, analytical and/or numerical models for the device are necessary so that the system may be optimized. Numerical simulations of three-dimensional water flow were performed for the purpose of examining pressure and velocity distributions in the bipolar plate of a simplified PEM electrolysis cell. The flow range in the present study is assumed to be hydrodynamically stable and steady. The numerical results show that the pressure drops diagonally from the inlet tube to the exit tube. The velocity distribution is very non-uniform in the channels. A minimum of the peak values of mainstream velocity component in the channels develops in the middle of the plate. The maximum of these peak values appears in the channel near the exit tube. The lines along which the mainstream velocity component is a peak in the channel almost overlay with each other, except that a minor difference can be noticed in the channel near the exit tube.

This content is only available via PDF.
You do not currently have access to this content.