Transport and deposition of ellipsoidal fibers in the human upper airways were analyzed using an asymmetric airway bifurcation model. The trachea and the first two generations (G0–G1) of the tracheobronchial tree were included in the study. The focus of the study was on prediction of transport and deposition of fibers and elongated particles. The laryngeal jet at the trachea entrance was modeled as an effective turbulence disturbance, and Reynolds stress transport turbulence model (RST) was used. For accurate modeling of the near wall airflow, the “two-layer zonal model” was used for boundary consideration, and the turbulence normal fluctuation close to wall is further corrected based on the “quadratic variation near wall model” (Tian and Ahmadi 2007). Lagrangian simulation of ellipsoidal fiber transport and deposition was developed where the coupled translational and rotational motions of the fibers were accounted for. The particle equations of motion included the hydrodynamic drag and torque, shear induced lift, gravitational sedimentation, and turbulence diffusion effects. The simulation results showed that the elongated fiber remained aligned with the main flow most of the time. On short duration occasions, the fibers rotated impulsively along their path. The fiber rotational motion was dependent on fiber geometry and the local flow shear. Fiber deposition pattern and deposition rate in the trachea and the first bifurcation were evaluated, and the results were compared with the experiments.
Skip Nav Destination
ASME 2009 Fluids Engineering Division Summer Meeting
August 2–6, 2009
Vail, Colorado, USA
Conference Sponsors:
- Fluids Engineering Division
ISBN:
978-0-7918-4372-7
PROCEEDINGS PAPER
Transport and Deposition of Particles and Fibers in Human Tracheobronchial Tree
Y.-S. Cheng
Y.-S. Cheng
Lovelace Respiratory Research Institute, Albuquerque, NM
Search for other works by this author on:
L. Tian
SUNY Canton, Canton, NY
G. Ahmadi
Clarkson University, Potsdam, NY
P. K. Hopke
Clarkson University, Potsdam, NY
Y.-S. Cheng
Lovelace Respiratory Research Institute, Albuquerque, NM
Paper No:
FEDSM2009-78284, pp. 1935-1938; 4 pages
Published Online:
July 26, 2010
Citation
Tian, L, Ahmadi, G, Hopke, PK, & Cheng, Y. "Transport and Deposition of Particles and Fibers in Human Tracheobronchial Tree." Proceedings of the ASME 2009 Fluids Engineering Division Summer Meeting. Volume 1: Symposia, Parts A, B and C. Vail, Colorado, USA. August 2–6, 2009. pp. 1935-1938. ASME. https://doi.org/10.1115/FEDSM2009-78284
Download citation file:
5
Views
0
Citations
Related Proceedings Papers
Related Articles
An Adjustable Triple-Bifurcation Unit Model for Air-Particle Flow Simulations in Human Tracheobronchial Airways
J Biomech Eng (February,2009)
Turbulence Modeling in Three-Dimensional Stenosed Arterial Bifurcations
J Biomech Eng (February,2007)
Related Chapters
Stiffening Mechanisms
Introduction to Plastics Engineering
Conclusions
Bacteriophage T4 Tail Fibers as a Basis for Structured Assemblies
Application Analysis and Experimental Study on Performance of Energy-Saving Electret Fiber
Inaugural US-EU-China Thermophysics Conference-Renewable Energy 2009 (UECTC 2009 Proceedings)