In this article a CFD model of a three-dimensional Eulerian-Lagrangian is developed for a gas - non-Newtonian liquid flow in a rectangular column. The model resolves the time-dependent, three-dimensional motion of gas bubbles in a liquid to simulate the trajectory of bubbles. Our model incorporates drag, gravity, buoyancy, lift, pressure gradient and virtual mass forces acting on a bubble rising in a liquid, and accounts for two-way momentum coupling between the phases. Population balance equation is solved to model bubble coalescence and break up. In bubble coalescence, Prince and Blanch model is used which can consider the effect of fluid rheology. Luo and Svendosen model was selected for bubble break up. The standard k-e turbulence model is selected for calculating turbulent flow properties. Power-law non-Newtonian liquid is selected for analysis of effect of different solutions of carboxy methyl cellulose in water. The effect of changing fluid to non-Newtonian is discussed in terms of velocity profile and gas hold up.

This content is only available via PDF.
You do not currently have access to this content.