The feasibility of using liquid Al or B2O3 encapsulated in SiC particles was studied by using thermodynamic analysis and fluid-solid analysis at temperatures ranging from 800 to 1300°C. Alloy melts of the Al-Si and Fe-Al-Si systems were considered for absorbing and desorbing energy for a high temperature energy storage (TES) unit incorporated in a concentrating solar power scheme. Boria was also evaluated instead of metallic melts and compared with the traditional NaNO3-KNO3 molten salt as a TES medium. In addition to determining the enthalpies for sensible heat and phase transformations, the phase equilibrium was determined for possible reactions at the liquid Al/SiC and B2O3/SiC interfaces by calculating their thermodynamic stability. The transport of encapsulated SiC particles within a fluid and their effect on the thermal conductivity is discussed toward the efficacy of the thermal energy storage.

This content is only available via PDF.
You do not currently have access to this content.