The study of highly unsteady wing flapping includes the large scale vortices, complicated locomotion/dynamics and deformable wing structures. When flapping insects/birds approach or perch on some objects, such as ground, wall or obstacle, the solid boundary dissipates, absorbs and bounces the leading edge, trailing edge and wing tip vortices, which are generated and shed during the flapping flight. Such phenomenon creates a high pressure area, leads to cushion effect and influences the aerodynamics, stability and maneuverability significantly. This paper uses immersed boundary method (IBM) to numerically study the aerodynamic performance of flapping wing in proximity of obstacles, investigate the distance, flapping motion and wing flexibility effects and relevant symmetric/asymmetric flow patterns, research the influence of vortex generating and shedding to the lift/drag change, explore the key distance and reveal the mechanism how insects/birds adjust the flapping motion to achieve ideal flight. Such research could theoretically support the development of micro-bionic flapping wing vehicle.
- Fluids Engineering Division
Investigation of Obstacle Effects on the Aerodynamic Performance of Flapping Wings
Yin, B, & Yang, G. "Investigation of Obstacle Effects on the Aerodynamic Performance of Flapping Wings." Proceedings of the ASME 2017 Fluids Engineering Division Summer Meeting. Volume 1C, Symposia: Gas-Liquid Two-Phase Flows; Gas and Liquid-Solid Two-Phase Flows; Numerical Methods for Multiphase Flow; Turbulent Flows: Issues and Perspectives; Flow Applications in Aerospace; Fluid Power; Bio-Inspired Fluid Mechanics; Flow Manipulation and Active Control; Fundamental Issues and Perspectives in Fluid Mechanics; Transport Phenomena in Energy Conversion From Clean and Sustainable Resources; Transport Phenomena in Materials Processing and Manufacturing Processes. Waikoloa, Hawaii, USA. July 30–August 3, 2017. V01CT21A002. ASME. https://doi.org/10.1115/FEDSM2017-69264
Download citation file: