In the past few years, considerable attention has been paid to high-speed maglev train in the field of rail transit. The design speed of the high-speed maglev train is 600km/h, which is significantly higher than that of the high-speed train. With the increase in operating speed, high-speed maglev trains have higher requirements for aerodynamic shape. Superior performance, the beautiful aerodynamic shape is an important direction for the development of high-speed maglev trains. Based on the Vehicle Modeling Function (VMF) method, the current research has developed a parametric shape design method suitable for the aerodynamic shape of the maglev train’s nose. This method can obtain different topological structures of the high-speed maglev train’s nose. The current research uses this method to generate four maglev train noses with large appearance differences and uses these train noses to construct four simplified high-speed maglev models. Then this study numerically analyzes the flow fields of different train models and compares the differences in aerodynamic performance including aerodynamic drag, aerodynamic lift and wake characteristics. The Q-criterion is used to study the vortex structure and mechanism of different train wake regions, and the vortex propagation process is studied by turbulence kinetic energy (TKE). Studying the difference in the aerodynamic force of different topological shapes will help to improve the aerodynamic performance of high-speed maglev trains.

This content is only available via PDF.
You do not currently have access to this content.