Abstract

Arctic oil spills are particularly detrimental as they could cause extensive ice melting in addition to the environmental pollution they create. Floating oil slicks amongst ice floes absorb ambient energy and transfer that energy to the ice to aggravate melting in the thaw season. However, few studies have been undertaken to reveal how oil-ice interactions impact ice melting. This research employs a measurement technique to investigate the heat transfer pathways from oil slicks to the ice. Dual-luminescence imaging and particle imaging velocimetry (PIV) in a side cooled cavity is performed for temperature and velocity measurements of Toluene, respectively. Dual-luminescence imaging captured the spatial temperature distribution of the fuel. Consecutive imaging of the seeding particles in PIV provided the spatial velocity field of the fuel in the cavity. The results show that the convective field is directly coupled with the temperature field, i.e., the temperature difference instigates a flow in the liquid. Successful implementation of the two measuring techniques together is a step toward analyzing heat transfer pathways in a liquid fuel adjacent to an ice body, indicating the extent of melting.

This content is only available via PDF.
You do not currently have access to this content.