During turbofan development programs the evaluation of steady-state and transient engine performance is usually achieved by applying full thermodynamic engine models at least in the operating range between idle and maximum power conditions, but more recently also in the sub-idle operating range, e.g. for steady-state windmilling behavior and for starting, relight and shut down scenarios. The paper describes the setup, and in more detail the validation, of a full thermodynamic engine model for a two-spool mixed flow afterburner turbofan which is capable to run from maximum power down to zero speed and zero flow conditions in steady-state and transient mode. The validation is performed by using the model-based performance analysis procedure called ANSYN even in windmilling operation. Once the steady-state sub-idle model is validated the extension to transient sub-idle capability is achieved by simply adding the effects of rotor moment of inertia of the spools, while heat soakage effects are rather negligible without heat release in the burner. Especially lighting conditions in the burner are produced by such a validated sub-idle model inherently due to reliable data calculated at the burner entry station. The variety of applications of a validated full thermodynamic engine model is large. The performance data delivered is highly reliable and very consistent because the full operating range of the engine is covered with one model, and by appropriate means of speeding up the calculation even real-time capability may be achieved. In the paper synthesized data for an engine dry crank is compared to real engine test data as one typical application.

This content is only available via PDF.
You do not currently have access to this content.