A numerical study has been conducted to explore the effect of a pressure-side winglet on the flow and heat transfer over a blade tip. Calculations are performed for both a flat tip and a squealer tip. The winglet is in the form of a flat extension, and is shaped in the axial chord direction to have the maximum thickness at the chord location where the pressure difference is the largest between the pressure and suction sides. For the flat tip, the pressure side winglet exhibits a significant reduction in the leakage flow strength and an associated reduction in the aerodynamic loss. The low heat transfer coefficient “sweet-spot” region is larger with the pressure-side winglet, and lower heat transfer coefficients are also observed along the pressure side of the blade. The winglet reduces the average heat transfer coefficient by about 7%. In the presence of a squealer, the role of the winglet decreases significantly, and only a 0.5% reduction in the pressure ratio is achieved with the winglet with virtually no reduction in the average heat transfer coefficient.

You do not currently have access to this content.