Goal of this work is to define the main issues and guidelines for an accurate heat transfer CFD simulation of internal ribbed ducts. To this aim, two different ribbed ducts (AR = 1,3) have been experimentally investigated to obtain a data set useful to validate numerical analyses. Experimental HTC contour maps have been obtained using unsteady TLC technique. CFD activity deals with numerical simulation using both a commercial (Star-CD™) and an “in house” solver (HybFlow). Four different variants of the well-known two-equation turbulence models have been considered. Low cost heat transfer predictions of internal ducts are highly demanded by industry despite the uncommon complexity of modern internal coolant system. Accordingly, the main aim of the work is to provide some indications for the numerical modelling and to evaluate the accuracy level of predicted heat transfer when commercial or research packages are employed along with different grid resolution levels. Overall results are in good agreement with experimental data even if some local discrepancies are present.

This content is only available via PDF.
You do not currently have access to this content.