Due to the ever increasing demand for cost-optimised designs, modern engine design concepts lead to more and more highly loaded HP turbine blades. In order to achieve the high lift required, turbine airfoils will have to cope with main flow diffusion up to separation both on suction and pressure side. Thus, for film cooled HP turbine blades and vanes, the possible aerodynamic and aero-thermal interaction of highly loaded blade rows and film cooling needs to be addressed. The first results to be presented from this ongoing work within the European 5th Frame-Work-Project AITEB jointly comprises experimental high-speed cascade wind-tunnel as well as numerical investigations with state-of-the-art 3D-RANS CFD. Steady and unsteady experimental results detailing the row characteristic of the highly-loaded T120 HP-turbine cascade set the stage for detailed numerical investigations with and without coolant injection from rows of holes on the pressure side surface as well as comparative numerical calculations with different codes and turbulence models. Despite the current focus of the experimental work on aerodynamic topics, the numerical results to be presented comprise thermodynamic investigations and detailed studies on optimised coolant injection geometries as well.
Skip Nav Destination
ASME Turbo Expo 2004: Power for Land, Sea, and Air
June 14–17, 2004
Vienna, Austria
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
0-7918-4170-7
PROCEEDINGS PAPER
Aero-Thermodynamic Aspects of Film Cooling in Regions of Separated Flow on the Pressure Side of a High-Lift HPT Blade
Lars Homeier,
Lars Homeier
Universita¨t der Bundeswehr Mu¨nchen, Neubiberg, Germany
Search for other works by this author on:
Ewald Lutum,
Ewald Lutum
MTU Aero Engines GmbH, Mu¨nchen, Germany
Search for other works by this author on:
Erik Janke,
Erik Janke
Rolls-Royce Deutschland, Dahlewitz, Germany
Search for other works by this author on:
Frank Haselbach
Frank Haselbach
Rolls-Royce Deutschland, Dahlewitz, Germany
Search for other works by this author on:
Lars Homeier
Universita¨t der Bundeswehr Mu¨nchen, Neubiberg, Germany
Ewald Lutum
MTU Aero Engines GmbH, Mu¨nchen, Germany
Erik Janke
Rolls-Royce Deutschland, Dahlewitz, Germany
Frank Haselbach
Rolls-Royce Deutschland, Dahlewitz, Germany
Paper No:
GT2004-54067, pp. 277-286; 10 pages
Published Online:
November 24, 2008
Citation
Homeier, L, Lutum, E, Janke, E, & Haselbach, F. "Aero-Thermodynamic Aspects of Film Cooling in Regions of Separated Flow on the Pressure Side of a High-Lift HPT Blade." Proceedings of the ASME Turbo Expo 2004: Power for Land, Sea, and Air. Volume 5: Turbo Expo 2004, Parts A and B. Vienna, Austria. June 14–17, 2004. pp. 277-286. ASME. https://doi.org/10.1115/GT2004-54067
Download citation file:
5
Views
0
Citations
Related Proceedings Papers
Related Articles
Turbine Blade Platform Film Cooling With Simulated Swirl Purge Flow and Slashface Leakage Conditions
J. Turbomach (March,2017)
Turbine Platform Cooling and Blade Suction Surface Phantom Cooling From Simulated Swirl Purge Flow
J. Turbomach (August,2016)
Unsteady Heat Transfer and Pressure Measurements on the Airfoils of a Rotating Transonic Turbine With Multiple Cooling Configurations
J. Eng. Gas Turbines Power (September,2017)
Related Chapters
Control and Operational Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Boundary Layer Analysis
Centrifugal Compressors: A Strategy for Aerodynamic Design and Analysis
Operating Range
Design and Analysis of Centrifugal Compressors