The design of a three-dimensional non-axisymmetric end-wall is carried out using three-dimensional numerical simulations. The computations have been conducted both for the flat and contoured end-walls. The performance of the end-wall is evaluated by comparing the heat transfer and total pressure loss reduction. The contouring is done in such a way to have convex curvature in the pressure side and concave surface in the suction side. The convex surface increases the velocity by reducing the local static pressure while concave surface decreases the velocity by increasing the local pressure. The profiling of the end-wall is done by combining two curves, one that varies in the streamwise direction while the other varies in the pitchwise direction. Several contoured end-walls are created by varying the streamwise variation keeping the pitchwise curve constant. The flow near the contoured end-wall is seen to be significantly different than that of flat end-wall. The contoured end-wall is found to reduce the secondary flow by decreasing radial pressure gradient. The total pressure loss is also lower and the average heat transfer reduces by about 8% compared to the flat end-wall. Local reductions in heat transfer are significant (factor of 3). This study demonstrates the potential of three-dimensional end-wall contouring for reducing the thermal loading on the end wall.

This content is only available via PDF.
You do not currently have access to this content.