Wake-induced laminar-turbulent transition is studied at the leading edge of a C4-section compressor stator blade in a 1.5-stage axial compressor. Surface hot-film sensor observations are interpreted with the aid of numerical solutions from UNSFLO, a quasi three-dimensional viscous-inviscid flow solver. The passage of a rotor wake, with its associated negative jet, over the stator leading edge is observed to have a destabilizing effect on the suction surface boundary layer. This leads to transition closer to the stator leading edge than would have occurred under steady flow conditions. The strength of this phenomenon is influenced by the rotor-stator axial gap and the variability of individual rotor wake disturbances. A variety of transition phenomena are observed near the leading edge in the wake path. Wave packets characteristic of Tollmien–Schlichting waves are observed to amplify and break down into turbulent spots. Disturbances characteristic of the streaky structures occurring in bypass transition are also seen. Examination of suction surface disturbance and wake-induced transitional strip trajectories points to the leading edge as the principal receptivity site for suction surface transition phenomena at design loading conditions. This contrasts markedly with the pressure surface behavior, where transition at design conditions occurs remote from leading edge flow perturbations associated with wake chopping. Here the local receptivity of the boundary layer to the wake passing disturbance and turbulent wake fluid discharging onto the blade surface may be of greater importance.

This content is only available via PDF.
You do not currently have access to this content.