Effects of rotor centerline offset and whirl on the pre-stall and stall inception behavior of a high-speed tip-critical axial compressor were investigated. The observations were made using a circumferential array of unsteady pressure transducers. The maximum amount of rotor offset and whirl used in this investigation was 26% and 13% of the design axisymmetric tip clearance respectively. Measurements were conducted using transient throttle movements which quickly decreased the mass flow in the compressor until the onset of rotating stall. A second set of measurements used quasi-transient throttling starting from a mass flow about 0.5% larger than the stalling mass flow. These data were analyzed with the traveling wave energy method, visual inspection of the filtered pressure traces, and a two-point spatial correlation technique. For the uniform tip clearance case rotating stall occurred while the slope of the pressure rise characteristic was negative. As expected, the flow breakdown exhibited “spike” inception with no observable rotating disturbances in the pre-stall time period. The introduction of small levels of steady and unsteady tip clearance asymmetry did not significantly alter the time average performance of the stage; circumferential variations in pressure rise and flow coefficient were minimal and the stalling flow coefficient remained unchanged. However, significant short length-scale rotating disturbances were observed in both of these cases prior to stall inception. As in the symmetric tip clearance case, short length-scale disturbances initiated rotating stall in the non-uniform tip clearance experiments. The location of the generation of the incipient stall cells with respect to the non-uniform tip clearance was strongly effected by the rotor offset/whirl.

This content is only available via PDF.
You do not currently have access to this content.