Flameless combustion is characterized by very low NOx and CO emissions. It has successfully been used in technical furnaces under atmospheric conditions for many years. For the use in modern gas turbines the combustors have to be redesigned to meet the typical operating condition, i.e. high pressure and temperature. The flameless combustion under gas turbine relevant conditions has successfully been simulated using a detailed chemistry model [1]. However computational costs and turnaround times are very high for these simulations. In this work the influence of different reduced reaction mechanisms on the heat release and on the temperature and flow field depending on the implied combustion model are investigated. As a benchmark the simulations are compared to experimental data obtained by OH* chemiluminescence and OH LIF measurements [2]. The simulations are performed on the basis of the commercial software package ANSYS CFX 11.0.

This content is only available via PDF.
You do not currently have access to this content.