Experimental and numerical investigations of the tip leakage flow characteristics between turbine blade tip and stator wall (shroud) were conducted by a particle image velocimetry (PIV) system and the commercially available software CFX 11.0. A three-time scaled profile of the GE-E3 blade was used as specimen. Two rows of cylindrical film-cooling holes with 1.5mm diameter were arranged in the blade tip. One row with 5 holes was placed in pressure side just below the groove floor, and the other with 11 holes was equidistantly arranged on the tip along the mid camber line. To exhibit the generation and movement of leakage vortex, and to compare the coolant injection effects from different rows, several typical velocity profiles were captured by the PIV system. The experimental results were used as a data source to validate the turbulence model and numerical program. To better understand the mixing characteristics of the coolant injected from different rows with the leakage flow, the fluid fields of the leakage vortex and coolant flow were simulated, and the leakage mass rates from the blade tip in different coolant injection cases and different gaps were quantitatively estimated by the validated numerical program.

This content is only available via PDF.
You do not currently have access to this content.