Nonlinear prediction of combustion instabilities in premixed systems is undertaken on a generic configuration featuring an adjustable feeding manifold length, a multipoint injector composed of a perforated plate and a flame confinement tube. By changing the feeding manifold or flame tube lengths, the system exhibits different types of combustion regimes for the same flow operating conditions. Velocity, pressure and heat release rate measurements are used to examine oscillations during unstable operation. For many operating conditions, a limit cycle is reached at an essentially fixed oscillation frequency and quasi-constant amplitude. In another set of cases, the system features other types of oscillations characterized by multiple frequencies, amplitude modulation and irregular bursts which can be designated by “galloping” limit cycles or GLC. These situations are explored in this article. Imaging during GLCs indicates that the flame is globally oscillating but that the cycle is irregular. Prediction of these special oscillation states is tackled within the Flame Describing Function (FDF) framework. It is shown that it is possible to predict with a reasonable degree of agreement the ranges where a quasi-constant amplitude limit cycle will be established and ranges where the oscillation will be less regular and take the form of a galloping limit cycle. It is found that the FDF analysis also provides indications on the bounding levels of the oscillation envelope in the latter case.

This content is only available via PDF.
You do not currently have access to this content.