Gas turbine engine components are subject to both low-cycle fatigue (LCF) and high-cycle fatigue (HCF) loads. To improve engine reliability, durability, and maintainability, it is necessary to understand the interaction of LCF and HCF in these components, which can adversely affect the overall life of the engine. The LCF loads result from the aircraft flight profile and are typically high stress, nominally rotational and aerodynamic loads. HCF loads are a consequence of high frequency vibrations, such as the fluctuating loads on blades as they rotate through the wakes from the upstream stator vanes. This paper demonstrates the importance of a fully coupled FSI analysis in conjunction with a fatigue analysis to predict the effect of representative fluctuating loads on the fatigue life of blisk fan blades. The fully-coupled FSI analysis is compared to the partially coupled FSI analysis and it is found that the former better predicts the the structural response of the titanium alloy blade to the wake impingement from the upstream stator. This results in a non-linear stress history compared to the linear response of the partially coupled system which also under-predicts the peak stress by 24%. The fatigue analysis shows the blade will fail near the root with a maximum damage of 1.079(10−17) using Miner’s rule to calculate cumulative damage. The implications of this research can influence future experimental studies that aim to generate meaningful fatigue data, which will assist in the management of safe operation of gas turbines.

This content is only available via PDF.
You do not currently have access to this content.