The flow field of high pressure compressors is strongly influenced by secondary flow phenomena which lead to performance degradations. A significant fraction of the associated losses arises from tip as well as hub clearance vortices and their interaction with the main flow. In order to decrease the negative effect of clearance vortices, the application of vanelets, winglet-like structures attached to the tips of a cantilevered stator, is studied within the present paper. Different vanelets of generic design are applied to the stator and evaluated with respect to their aerodynamic effect by comparison against a datum configuration. The model comprises the investigated stator enclosed between two rotating blade rows. Detailed insight into the underlying phenomena is provided by numerical investigations with the compressible Reynolds-averaged Navier-Stokes equations. The structures led to an increased efficiency at the aerodynamic design point due to the suppression of the clearance mass flow in combination with a reduced vortex cross section. Under strongly throttled conditions a so called vanelet corner stall developed, which induced blockage near hub. Thus the main flow was displaced towards casing enhancing stable operation of the downstream rotor. Surge margin was consequently increased.

This content is only available via PDF.
You do not currently have access to this content.