Online line-of-sight (LOS) pyrometer is used on certain jet engines for diagnosis and control functions such as hot-blade detection, high-temperature limiting, and condition-based monitoring. Hot particulate bursts generated from jet engine combustor at certain running conditions lead to intermittent high-voltage signal outputs from the LOS pyrometer which is ultimately used by the onboard Digital Engine Controller (DEC).

To study the nature of hot particulates and enable LOS pyrometer functioning under burst conditions, a Multi-Color Pyrometry (MCP) system was developed under DARPA funded program and tested on an aircraft jet engine. Soot particles generated as by-product of combustion under certain conditions was identified as the root cause for the signal burst in a previous study. The apparent emissivity was then used to remove burst signals.

In current study, the physics based filter with MCP algorithm using apparent emissivity was further extended to real-time engine control by removing burst signals at real time (1MHz) and at engine DEC data rate. Simulink models are used to simulate the performances of the filter designs under engine normal and burst conditions. The results are compared with current LOS pyrometer results and show great advantage. The proposed model enables new LOS pyrometer design for improved engine control over wide range of operating conditions.

This content is only available via PDF.
You do not currently have access to this content.