This paper summarizes the main results sorted out from a Design of Experiment (DoE) based on a validated Computational Fluid Dynamics (CFD). Several tip recessed geometries applied to an unshrouded impeller were considered in conjunction with two tip clearance levels. The computations show that recessed tip geometries have positive effects when considering high flow coefficient values while in part-load conditions the gain is reduced. Starting from the results obtained when studying tip cavities, a single rim tip squealer geometry was then analysed: the proposed geometry leads to performance improvements for all the tested conditions considered in this work.

This content is only available via PDF.
You do not currently have access to this content.