The trailing edge of the high pressure turbine blade presents significant challenges to the turbine cooling engineer. A novel cooling design using cross corrugated slots for the trailing edge has been proposed. This geometry allows blade designers to finely tune pressure loss and consequently coolant flow through the slot, but potentially results in poor film cooling performance downstream of the slot exit, an effect that could be mitigated with exit shaping. The current study is focused on comparing film cooling effectiveness on the cutback surface and lands with a plain rectangular slot under the same conditions. A set of nine cross corrugated internal slot geometries has been investigated in a large scale model of the trailing edge pressure side ejection slot exit. Four geometries used a 90° included angle with variations to the channel alignment at slot exit. Four used a 120° included angle, with the same variations to the exit alignment. The final geometry used a 90° included angle with exit shaping. Pressure sensitive paint was used to measure adiabatic film cooling effectiveness at five blowing ratios ranging from 0.6 to 1.4 in increments of 0.2. High resolution 2D distributions of film cooling effectiveness both on the cutback surface and the top of the lands were recorded. It was found that unmodified cross corrugated slots do result in poor film effectiveness on the cutback surface compared to a plain rectangular slot. However, land cooling is slightly improved, and applying exit shaping to the cross corrugated slot results in effectiveness levels at the trailing edge on par with or even superior to the rectangular slot at blowing ratios of 0.8 or below. Therefore, in this respect, the novel cross corrugated slot design proposed is a viable candidate for blade design, provided exit shaping is used and low blowing ratios are expected.

This content is only available via PDF.
You do not currently have access to this content.