The internal flow and discharge parameters of a pressure swirl atomizer (PSA) are numerically investigated using a coupled Level-Set (LS)/Volume-of-Fluid (VOF) solver that combines the advantages of LS and algebraic VOF methods by maintaining the mass conservation and the interface sharpness simultaneously. Internal flow velocity profile and discharge parameters including discharge coefficient, film thickness, and spray cone angle are compared between simulation results and the experimental data that are available in the literature. A parametrical study is also performed to investigate the effects of the key geometric parameters of the PSA configuration on the discharge parameters. The geometric parameters studied are the length to diameter ratio of the swirl chamber, the length to diameter ratio of the exit orifice, the swirl chamber diameter to exit orifice diameter ratio, and the swirl chamber convergence angle.

This content is only available via PDF.
You do not currently have access to this content.