Cooling of turbine hot-gas-path components can increase engine efficiency, reduce emissions, and extend engine life. As cooling technologies evolved, numerous blade cooling geometries have been, and continue to be proposed by researchers and engine builders for internal and external blade and vane cooling. However, the impact of these improved cooling configurations on overall engine performance is the ultimate metric. There is no assurance that obtaining higher cooling performance for an individual cooling technique will result in better turbine performance because of the introduction of additional second law losses, e.g. exergy loss from blade heat transfer, cooling air friction losses, fluid mixing, etc. and thus the higher cooling performance might not always be the best solution to improve efficiency.

To quantify the effect of different internal and external blade cooling techniques and their combinations on engine performance, a cooled engine model has been developed for industrial gas turbines and aero-engines using MATLAB Simulink®. The model has the flexibility to be used for both engine types, and consists of uncooled on-design, turbomachinery design and a cooled off-design analysis in order to evaluate the engine performance parameters by using operating conditions, polytropic efficiencies, material information and cooling system information. The cooling analysis algorithm involves a Second Law analysis to calculate losses from the cooling technique applied.

The effects of variations in engine parameters such as turbine inlet temperature, by-pass ratio, and operating temperature are studied. The impact of variations in metal Biot number, thermal barrier coating Biot number, film cooling effectiveness, internal cooling effectiveness and maximum allowable blade temperature on engine performance parameters are analyzed. Possible design recommendations based on these variations, and direction of use of this tool for new cooling design validation, are presented.

This content is only available via PDF.
You do not currently have access to this content.