For the concentrating solar power (CSP) applications, the supercritical carbon dioxide (s-CO2) power cycle is beneficial in many aspects, including higher cycle efficiencies, reduced component sizing, and potential for the dry cooling option, in comparison to the conventional steam Rankine cycle. Increasing number of investigations and research projects are involved in improving this technology to realize the s-CO2 cycle as a candidate to replace the conventional power conversion systems.

In this conceptual study, an isothermal compressor, a turbomachine which undergoes the compression process at constant temperature to minimize compression work, is applied to the s-CO2 power cycle layout. To investigate the cycle performance changes of adopting the novel technology, a framework for defining the efficiency of the isothermal compressor is revised and suggested. This study demonstrates how the compression work for the isothermal compressor is reduced compared to that of the conventional compressor under varying compressor inlet conditions.

Furthermore, the recompression Brayton cycle layout using s-CO2 as a working fluid is evaluated for the CSP applications. Results show that for compressor inlet temperatures (CIT) near the critical point, the simple recuperated Brayton cycle with an isothermal compressor performs better than the given reference recompression cycle by 6–10% points in terms of cycle thermal efficiency. For higher CIT values, the recompression cycle using an isothermal compressor can perform above 50% in thermal efficiency. Adopting an isothermal compressor in the s-CO2 layout, however, can imply larger heat exchange area for the compressor which requires further detailed design for realization in the future.

This content is only available via PDF.
You do not currently have access to this content.