Can-annular combustors consist of a set of independent cans, connected on the upstream side to the combustor plenum, and on the downstream side to the turbine inlet, where a transition duct links the round geometry of each can with the annular segment of the turbine inlet. Each transition duct is open on the sides towards the adjacent transition ducts, so that neighbouring cans are acoustically connected through a so called cross-talk open area. This theoretical, numerical and experimental work discusses the effect that this communication has on the thermoacoustic frequencies of the combustor. We show how this communication gives rise to axial and azimuthal modes, and that these correspond to particularly synchronised states of axial thermoacoustic oscillations in each individual can. We show that these combustors typically show clusters of thermoacoustic modes with very close frequencies and that a slight loss of rotational symmetry, e.g. a different acoustic response of certain cans, can lead to mode localization. We corroborate the predictions of azimuthal modes, clusters of eigenmodes and mode localization with experimental evidence.

This content is only available via PDF.
You do not currently have access to this content.