The present article reports experimental and numerical analyses of the macrostructures featured by a stratified swirling flame for varying stratification ratio (SR). The studies are performed with the Beihang Axial Swirler Independently-Stratified (BASIS) burner, a novel double-swirled full-scale burner developed at Beihang University. Experimentally, it is found that depending on the ratio between the equivalence ratios of the methane-air mixtures from the two swirlers, the flame stabilizes with three different shapes: attached V–flame, attached stratified flame and lifted flame. In order to better understand the mechanisms leading to the three macrostructures, large eddy simulations (LES) simulations are performed via the open source Computational Fluid Dynamics software OpenFOAM using the incompressible solver Reacting Foam. Changing the SR, simulation results show good agreement with experimentally observed time-averaged flame shapes, demonstrating that the incompressible LES are able to fully characterize the different flame behaviours observed in stratified burners. When the LES account for heat loss from walls, they better capture the experimentally observed flame quenching in the outer shear layer. Finally, insights into the flame dynamics are provided by analysing probes located near the two separate streams.

This content is only available via PDF.
You do not currently have access to this content.