The reduction of fluid-dynamic losses in high speed gearing systems is nowadays increasing importance in the design of innovative aircraft propulsion systems, which are particularly focused on improving the propulsive efficiency. Main sources of fluid-dynamic losses in high speed gearing systems are windage losses, inertial losses resulting by impinging oil jets used for jet lubrication and the losses related to the compression and the subsequent expansion of the fluid trapped between gears teeth. The numerical study of the latter is particularly challenging since it faces high speed multiphase flows interacting with moving surfaces, but it paramount for improving knowledge of the fluid behavior in such regions. The current work aims to analyze trapping losses in a gear pair by means of three-dimensional CFD simulations. In order to reduce the numerical effort, an approach for restricting computational domain was defined, thus only a portion of the gear pair geometry was discretized. Transient calculations of a gear pair rotating in an oil-free environment were performed, in the context of conventional eddy viscosity models. Results were compared with experimental data from the open literature in terms of transient pressure within a tooth space, achieving a good agreement. Finally, a strategy for meshing losses calculation was developed and results as a function of rotational speed were discussed.

This content is only available via PDF.
You do not currently have access to this content.