Film cooling technique is widely used in a modern gas turbine. Many applications in hot sections require multiple film cooling rows to get better cooled. In most situation, the additive effect is computed using Sellers superposition method, but it is not accurate when the hole rows are close to each other. In this paper, row spacing between two rows of cooling hole was investigated by numerical method, which was validated by PSP results. The validation experiments are performed on flat test bench and the freestream is maintained at 25m/s. The inlet boundary conditions of numerical simulations were same with the experiment. Both round hole and shaped hole were investigated at blowing ratio M = 0.5, density ratios DR = 1.5 and row spacing S/D = 6, 10, 15, 20. It is found that the round hole results by Sellers method are similar to experiment results only at large row spacing, and the results of Sellers are always higher than experimental results. The boundary layer has a big effect on cooling effectiveness for round hole, but very little effect on shaped hole. When the row spacing increase, the difference between experiment and prediction become smaller. The vortex is the major factor to effect the accuracy of superposition method.

This content is only available via PDF.
You do not currently have access to this content.