Plasma actuators may be successfully employed as virtual control surfaces, located at the trailing edge of blades, both on the pressure and on the suction side, to control the aeroelastic response of a compressor cascade. Actuators generate an induced flow against the direction of the freestream. As a result, actuating on the pressure side yields an increase in lift and nose down pitching moment, whereas the opposite is obtained by operating on the suction side. A properly phased alternate pressure/suction side actuation allows to reduce vibration and to delay the flutter onset. This paper presents the development of a linear frequency domain reduced order model for lift and pitching moment of the plasma-equipped cascade. Specifically, an equivalent thin airfoil model is used as a physically consistent basis for the model. Modifications in the geometry of the thin airfoil are generated to account for the effective chord and camber changes induced by the plasma actuators, as well as for the effects of the neighboring blades. The model reproduces and predicts correctly the mean and the unsteady loads, along with the aerodynamic damping on the plasma equipped cascade. The relationship between the parameters of the reduced order model with the flow physics is highlighted.

This content is only available via PDF.
You do not currently have access to this content.