Abstract

Synthetic jets are produced by devices that enable a suction phase followed by an ejection phase. The resulting mean mass budget is hence null and no addition of mass in the system is required. These particular jets have especially been considered for some years for flow control applications. They also display features that can become of interest to enhance heat exchanges, for example for wall cooling issues. Synthetic jets can be generated through different mechanisms, such as acoustics by making use of a Helmholtz resonator or through the motion of a piston as in an experience mounted at Institut Pprime in France. The objective of this specific experiment is to understand how synthetic jets can enhance heat transfer in a multi-perforated configuration. As a complement to this experimental set up, Large-Eddy Simulations are produced and analysed in the present document to investigate the flow behavior as well as the impact of the synthetic jets on wall heat transfer.

The experimental system considered here consists in a perforated heated plate, each perforation being above a cavity where a piston is used to control the synthetic jets. Placed in a wind tunnel test section, the device can be studied with a grazing flow and multiple operating points are available. The one considered here implies a grazing flow velocity of 12.8 m.s−1, corresponding to a Mach number around 0.04, and a piston displacement of 22 mm peak-to-peak at a frequency of 12.8 Hz. These two latter parameters lead to a jet Reynolds number of about 830.

A good agreement is found between numerical results and experimental data. The simulations are then used to provide a detailed understanding of the flow. Two main behaviours are found, depending on the considered mid-period. During the ejection phase, the flow transitions to turbulence and the formation of characteristic structures is observed; the plate is efficiently cooled. During the suction phase the main flow is stabilised; the heat enhancement is particularly efficient in the hole wakes but not between them, leading to a heterogeneous temperature field.

This content is only available via PDF.
You do not currently have access to this content.