Tie bolt rotors for centrifugal compressors comprise multiple shaft components that are held together by a single tie bolt. The axial connections of these rotors — including butt joints, Hirth couplings, and Curvic couplings — exhibit a contact stiffness effect, which tends to lower the shaft bending frequencies compared to geometrically identical monolithic shafts. If not accounted for in the design stage, shaft bending critical speed margins can be compromised after a rotor is built. A previous paper had investigated the effect of tie bolt force on the bending stiffness of stacked rotor assemblies with butt joint interfaces, both with and without pilot fits. This previous work derived an empirical contact stiffness model and developed a practical finite element modeling approach for simulating the axial contact surfaces, which was validated by predicting natural frequencies for several test rotor configurations. The present work built on these previous results by implementing the same contact stiffness modeling approach on a real tie bolt rotor system designed for a high pressure centrifugal compressor application. Each joint location included two axial contact faces, with contact pressures up to five times higher than previously modeled, and a locating pilot fit. The free-free natural frequencies for different amounts of tie bolt preload force were measured, and the frequencies exhibited the expected stiffening behavior with increasing preload. However, a discontinuity in the data trend indicated a step-change increase in the contact stiffness. It was shown that this was likely due to one or more of the contact faces becoming fully engaged only after sufficient tie bolt force was applied. Finally, a design calculation was presented that can be used to estimate whether contact stiffness effects may be ignored, which could simplify rotor analyses if adequate contact pressure is used.

This content is only available via PDF.
You do not currently have access to this content.