A team led by Gas Technology Institute (GTI), Southwest Research Institute® (SwRI®) and General Electric Global Research (GE-GR), along with the University of Wisconsin and Natural Resources Canada (NRCan), is actively executing a project called “STEP” [Supercritical Transformational Electric Power project], to design, construct, commission, and operate an integrated and reconfigurable 10 MWe sCO2 [supercritical CO2] Pilot Plant Test Facility located at SwRI’s San Antonio, Texas campus. The $119 million project is funded $84 million by the US DOE’s National Energy Technology Laboratory (NETL Award Number DE-FE0028979) and $35 million cost share by the team, component suppliers and others interested in sCO2 technology. This project is a significant step toward sCO2 cycle based power generation commercialization and will inform the performance, operability, and scale-up to commercial facilities.

Supercritical CO2 (sCO2) power cycles are Brayton cycles that utilize supercritical CO2 working fluid to convert heat into power. They offer the potential for higher system efficiencies than other energy conversion technologies such as steam Rankine or organic Rankine cycles, especially when operating at elevated temperatures. sCO2 power cycles are being considered for a wide range of applications including fossil-fired systems, waste heat recovery, concentrated solar power, and nuclear.

The pilot plant design, procurement, fabrication, and construction are ongoing at the time of this publication. By the end of this 6-year project, the operability of the sCO2 power cycle will be demonstrated and documented starting with facility commissioning as a simple closed recuperated cycle configuration initially operating at a 500°C (932°F) turbine inlet temperature and progressing to a recompression closed Brayton cycle technology (RCBC) configuration operating at 715°C (1319 °F).

This content is only available via PDF.
You do not currently have access to this content.