Abstract

Dust may be challenging to the blades of wind turbines deployed in the harsh environment of the Sahara. In this paper, the airfoil sections of a wind turbine have been customized for low sensitivity to surface roughness at the wind conditions prevailing in Hurghada—Egypt to avoid serious power degradation. To this end, a two-dimensional a computational model is developed using ANSYS-FLUENT 15.0 to understand the distinguishing features that govern the specific behavior of NACA-63-215 (root section) and NACA-63-415 airfoils (midspan and tip sections) with respect to dust deposition and sand erosion. Subsequently, a two-objective genetic algorithm is developed in MATLAB 16.0 and used to customize the airfoil geometry, enhancing the lift-to-drag ratio while simultaneously minimizing the deposition and erosion rates. The whole optimization process is realized through coupling MATLAB 16.0 with ANSYS-FLUENT 15.0 via the ICEM meshing tool to predict the optimum blade shape based on its aerodynamic performance in a dust-loaded environment. The optimization process enhanced the aerodynamic performance for the aforementioned airfoils under particle laden conditions with up to 38.34% higher lift-to-drag coefficients ratio in addition to 70 % and 99.267 % drop in dust deposition and sand erosion, repectively.

This content is only available via PDF.
You do not currently have access to this content.