High performance centrifugal compressors with high pressure ratio are highly applied in turboshaft engines in order to obtain higher power-to-weight ratio and lower fuel consumption. The optimization of the aerodynamic configuration design of splitter blades is one of the effective ways to achieve higher efficiency. An in-house designed single-stage centrifugal compressor with a pressure ratio up to 12.0 is studied in this paper. By using a three-dimensional CFD (computational fluid dynamic) method, this paper investigates influences of the number of splitter blades and their leading edge position on the flow field characteristics and aerodynamic performance of the centrifugal compressor with ultra-high pressure ratio. Results show that three critical flow characteristics lead to severe losses in centrifugal compressor impeller when only full blades are applied. Those flow characteristics include the strong shock wave, the severe tip clearance flow at the inlet region and the severe flow separation at the rear region. Therefore, the inlet blade number should be reduced to decrease the loss caused by strong shock waves and tip clearance flow, while the outlet blade number should be sufficient enough to suppress flow separation. By optimizing the number and the leading edge position of splitters, the performance can be improved under the reduction of combined losses caused by shock waves, tip clearance flow and flow separation. When an aerodynamic configuration with single-splitters is used, numerical results indicate that the leading edge position of splitter blades should be located at 60% of the main blade chord length, and the centrifugal impeller isentropic efficiency with ultra-high pressure ratio can be increased from 82.4% (the aerodynamic configuration with only full blades) to 89.5%; when an aerodynamic configuration with double-splitters is used, the leading edge positions of middle and short splitter blades should be respectively located at 40% and 60% of the main blade chord length, and the impeller isentropic efficiency can be further improved to 90.9%.

This content is only available via PDF.
You do not currently have access to this content.