A numerical experiment of intentionally reduced complexity is used to demonstrate a method to classify flight missions in terms of the operational severity experienced by the engines. In this proof of concept, the general term of severity is limited to the erosion of the core flow compressor blade and vane leading edges. A Monte Carlo simulation of varying operational conditions generates a required database of 10000 flight missions. Each flight is sampled at a rate of 1 Hz. Eleven measurable or synthesizable physical parameters are deemed to be relevant for the problem. They are reduced to seven universal non-dimensional groups which are averaged for each flight. The application of principal component analysis allows a further reduction to three principal components. They are used to run a support-vector machine model in order to classify the flights. A linear kernel function is chosen for the support-vector machine due to its low computation time compared to other functions. The robustness of the classification approach against measurement precision error is evaluated. In addition, a minimum number of flights required for training and a sensible number of severity classes are documented. Furthermore, the importance to train the algorithms on a sufficiently wide range of operations is presented.

This content is only available via PDF.
You do not currently have access to this content.