Brush seals are widely used in various turbomachinery applications because they provide reduced leakage than labyrinth seals in a compact space. Brush seals are generally mounted on static components and their flexible bristle tips engage the rotor to form a dynamic seal. In this paper, development of a brush seal mounted on a rotor is discussed. Benefits of this enhancement to brush seal include avoiding localized rubs on the rotor, which reduces heating of a local spot and resulting rotor bow and instabilities. The bristles are angled circumferentially instead of axially and are supported by a conical backplate. Under rotation, the bristles are pushed towards the backplate by the centrifugal force. Seal configurations are designed to fit into interstage and inter-shaft locations. A modeling approach for predicting stiffness and operating stresses in these seals also is outlined. A test setup is developed to characterize the performance of rotating brush seals under engine-representative centrifugal force and pressure differentials. Presented results demonstrate that brush seal can achieve tight effective gaps and desired performance after undergoing initial wear.

This content is only available via PDF.
You do not currently have access to this content.